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The Calorimeter Pyramid
Are you interested in a Pyramid Scheme?
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The Challenge 
Modern calorimeters have millions of channels

How do you scale generative 
models to millions of cells?
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Simulated view of one HGCal endcap, containing particles from the  
nominal 140 pileup interaction expected at the HL-LHC


[D. Newbold - The High-Luminosity Upgrade of the CMS Detector]
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http://www.hep.ph.ic.ac.uk/~hallg/CMS_links/PPRP_bid_2016/CMS_Upgrade.pdf


Two Strategies
          Super Resolution                    or                        Point Clouds
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Sparse Super Resolution
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The Calorimeter Pyramid
Sparse Super Resolution

First, learn all hit cells  Second, learn the energies of the hits→
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Choose your Diffusion
Efficient and flexible ways to accelerate diffusion (DM/CFM) in HEP

Cheng Jiang, Sitian Qian, Huilin Qu 
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Motivation
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• The study focuses mostly on Score Matching, in 

which the score function is solved by different 

choices of SDE/ODE. How we could effectively 

accelerate the generative model, by replacing only 

parts of that.

SDE

DDPM EDM Euler EDM Heun Combined midpoint

2006.11239

2206.003642206.00364

2206.00927

ODE

DDIM DPM-Solver++ Uni-PC LMS Restart

2010.02502

2211.01095

2302.04867

2306.14818

LMS

• Backward process (training-free):
We have adopted almost all mainstream samplers/schedulers to 

do comprehensive comparisons on both shower cells 

(CaloChallenge) and jet constituents (JetNet)
• Forward process (faster divergence):
Effective way to mitigate the challenging optimization: Denoiser 

function with preconditioning parameters, weighted by min-

Signal-to-Noise ratio (min-SNR)

ℒ = 𝔼𝒕,𝜺[𝒘(𝒕)||𝑭 𝒄𝒊𝒏𝒙𝒕, 𝒕 − 𝟏
𝒄𝒐𝒖𝒕

(𝒙𝟎 − 𝒄𝒔𝒌𝒊𝒑𝒙𝒕)|| 𝟐𝟐]

𝒘 𝒕 = /(𝒕 ∗ 𝝈𝒄)
(𝒕𝟐 + 𝝈𝒄𝒌)𝟐

https://onlinelibrary.wiley.com/doi/book/10.1002/9781119121534


Results & More (Wed Loc #45)
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Indistinguishable high-level features for shower from cell-level generations

Achieve Ο(10) acceleration with comparable performance for current 

benchmark models

Speedup !!!
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How about replacing the backbone for the model? Changing 

flow matching with Unet/Transformer backbone to GBDT, 

which latter has much faster training and inference time.  

Is this even possible?? YES！(BUFF: BDT based-ultra-fast 

flow matching.) Few mins training, below millisecond 

generation time, could replace most flow-based model.

E.g. Unfolding, huge improvement on correlation 

difference



RESULTS* 

DIFFUSION MEETS NESTED SAMPLING
NEUTRALISING BAD GEOMETRY IN BRIDGING INFERENCE PROBLEMS
DAVID YALLUP
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Evolution of likelihood constrained prior through a NS run.
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DIFFUSION 

GEOMETRY 

 

BRIDGING DISTRIBUTIONS P(µ)
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Learnt gradient vector field mapping prior to posterior.
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Toy 1D inference problem. 
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Schematic reconstructing posterior from NS shells.

Clustering/ensembling to deal with multimodalities. Gradients efficiently explore sweeping degeneracies.

Whitening transforms to regularize the metric.
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2D representation of learnt vector fields.

INFERENCE 
Fundamental physics is full of hard inference problems. Our optimization or sampling algorithms 
have to be able to navigate complex geometry

★

G̃-EWMSSM. 1σ and 2σ CL regions. GAMBIT 2.4.0
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P(θ |D) = ℒ(D |θ)P(θ)
Z

Bayes Rule

Population Monte Carlo methods — particle filters 
— form bridges from known (prior) to complex 
unknown (posterior) distributions. Sequential Monte 
Carlo (SMC) and Nested Sampling (NS) are two 
variants evolving populations of points[6]. Both give 
us access to the normalizing constant . Z

Diffusion models introduce time axis to the problem, 
bridging algorithms have another time axis we can efficiently 
evolve by fine tuning the score estimate.
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Diffusion models learn the gradient of 
the implicit density of a point cloud. 
Solving evolution through this field with 
Stochastic Differential Equation (SDE) 
or Ordinary Differential Equation (ODE) 
solvers yields Diffusion[7] or Continuous 
flows[8].


Neural learnt maps can transport any 
known distribution to an implicit target, 
no strict requirement on latent/prior!

Bad geometry[3] in inference 
problems comes in many 
guises, and intuition gets 
progressively less clear in high 
dimension. Machine learnt 
neural mappings offer us a new 
tool to approach this.


In the context of bridging distributions see pocoMC[4], nessai[5]

yallup/fusions dy297@cam.ac.uk yallup@github.io
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Calculated log integral for Rosenbrock function in various dimensions

Comparison to standard (non-neural) tools[9,10] shows promising scaling, comparable to 
step samplers despite using rejection sampling, whilst maintaining accurate predictions 
on benchmark challenging problems.


Algorithm demonstrated uses zero classical methods, treating the geometry of the 
problem solely with neural networks and score based models.


* Work in progress, comparison to other neural methods[4,5,11,12], plenty left on the table 
to tune in the algorithm.
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 for all, otherwise following defaults.


UltraNest in 10D  projected after early termination due to exceeding 
walltime.
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Evolution of likelihood constrained prior through a NS run.
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Can we bring the latest developments in score based 
generative modelling to a nested sampling paradigm?



Calculating entanglement entropy with
generative neural networks

Dawid Zapolski, Piotr Białas, Piotr Korcyl,
Tomasz Stebel, Mateusz Winiarski
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Calculating entanglement entropy with generative
neural networks

A B
Quantum 1D Ising

Sn(A) = 1
1−n log Tr ρn

A

Classical 2D Ising



Calculating entanglement entropy with generative
neural networks

Autoregressive neural
network
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