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The Calorimeter Pyramid

Are you interested in a Pyramid Scheme?

Simon Schnake, Dirk Kricker, Kerstin Borras WNTH
o HELMHOLTZ :
EuCAIFCon24



Poster Wed 42
The Challenge

Modern calorimeters have millions of channels

Simulated view of one HGCal endcap, containing particles from the
nominal 140 pileup interaction expected at the HL-LHC
[D. Newbold - The High-Luminosity Upgrade of the CMS Detector]

How do you scale generative
models to millions of cells?



http://www.hep.ph.ic.ac.uk/~hallg/CMS_links/PPRP_bid_2016/CMS_Upgrade.pdf
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Two Strategies

Super Resolution or Point Clouds

Sparse Super Resolution
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The Calorimeter Pyramid

Sparse Super Resolution

First, learn all hit cells = Second, learn the energies of the hits

Gumbel(0,1)

’ Gumbel(—=7,1)
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Choose your Diffusion
Efficient and flexible ways to accelerate diffusion (DM/CFM) in HEP

2401.13162

o

Cheng Jiang, Sitian Qian, Huilin Qu




* The study focuses mostly on Score Matching, in = \

which the score function is solved by different

M Ot i Vat i O n choices of SDE/ODE. How we could effectively

accelerate the generative model, by replacing only

parts of that.

* Backward process (training-free):

We have adopted almost all mainstream samplers/schedulers to ,
do comprehensive comparisons on both shower cells e Forward process (faster divergence):

(CaloChallenge) and jet constituents (/etNed) Effective way to mitigate the challenging optimization: Denoiser

function with preconditioning parameters, weighted by min-
SDE

ODE Signal-to-Noise ratio (min-SNR)

L= Eye[w®)||F(CinXe t) ——— (Xo — CskipXe)|| 3]

Cout

y ve

= DDPM = EDM Euler =EDMHeun = Combined midpoint = DDIM = DPM-Solver++ =Uni-PC =L = Restart



https://onlinelibrary.wiley.com/doi/book/10.1002/9781119121534
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Results & More (Wed Loc #45

[ndistinguishable high-level features for shower from cell-level generations How about replacing the backbone for the model? Changing

] A — eom — eom — eson flow matching with Unet/Transformer backbone to GBDT,
Geant4 Geant4 i A Geantd g -------- Geantd | | e Geantd | |\ e Geant4
which latter has much faster training and inference time.
| | \ ‘ : Is this even possible?? YES! (BUFF: BDT based-ultra-fast
— — — . flow matching.) Few mins training, below millisecond
e O generation time, could replace most flow-based model.
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Evolution time (T)

INFERENCE GEOMETRY

Bad geometryB3! in inference
problems comes in many
guises, and intuition gets
progressively less clear in high
dimension. Machine learnt

Fundamental physics is full of hard inference problems. Our optimization or sampling algorithms
have to be able to navigate complex geometry

fusions o

G-EWMSSM. 1o and 2 CL regions. GAMBIT 2.4.0

el e — neural mappings offer us a new
o P i DESY? tool to approach this.
800 08 % PantheonPlus DESI BAO+CMB+PantheonPlus
5
| | n % In the context of bridging distributions see pocoMC (4], nessai (s
Can we brir [e the latest developments IN score based X
&) <9
e E
I3 =
[ [ ] ] IS 400 04 o>
I
enerative modelling to a nested samplin aradigm? s
" 200 02 &
* 0.1 0.2 0.3 0.4 0.5
0 200 400 600 800 1000 DESI collaboration LCDM samplesi?!
mgy (GeV)
Gambit Collaboration SUSY profile likelihood scanl')
lustering \g to deal with Gradients efficiently explore sweeping degeneracies.
Diffusion time (t)
]
L]
Population Monte Carlo methods — particle filters g(D | 9)P(9) Diffusion models learn the gradient of °
— form bridges from known (prior) to complex P(g | D) - 7 the implicit density of a point cloud.
unknown (posterior) distributions. Sequential Monte 7 Solving evolution through this field with B o o L 0
Carlo (SMC) and Nested Sampling (NS) are two Bayes Rl Stochastic Differential Equation (SDE) : ’ " ime ’ :
variants evolving populations of pointslél. Both give or Ordinary Differential Equation (ODE)
. : £ 1cian(7] h P(0) SDE - |[V¢| P(6|D)
us access to the normalizing constant Z. solvers yields Diffusionl”] or Continuous
T flowstel.
— PO
“‘ i . g
- —— B=00 — B=001 ——B=01 — B=10 \ Neural learnt maps can transport any )
| known distribution to an implicit target,
/rrra /,,r'\‘ no strict requirement on latent/prior!
i 0.0 0.2 0.4 0.6 0.8 1.0
r -15 -1.0 L(; 5 0;0 0.5 1‘0 15 time
Learnt gradient vector field mapping prior to posterior.
Toy 1D inference problem.
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= NEUTRALISING BAD GEOMETRY IN BRIDGING INFERENCE PROBLEMS
—2

R E S U L I S Nisve = 2000 for all, otherwise following defaults.

9 UltraNest in 10D Ny, projected after early termination due to exceeding
10 T T T o = UltraNest walltime.
3 . . . . % fusions < == PolyChord
Diffusion models introduce time axis to the problem, g8k * PolyChord x ] i
g : . . - UltraN e
bridging algorithms have another time axis we can efficiently x Ylralest e < = PolyChors
: . ) N = fusions
evolve by fine tuning the score estimate. © 107k 1 ©
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0 P(e) 0
Corner plot of 5D Rosenbrock function Partial corner plot of 10D Rosenbrock function
0.3 T T T
—X_ PolyChord
02f % f‘;ﬁ:::st E Comparison to standard (non-neural) tools[®19 shows promising scaling, comparable to
usie . . . . . . . ' . .
step samplers despite using rejection sampling, whilst maintaining accurate predictions
— 01} 4
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=
Evolution time (T)

on benchmark challenging problems.
0.0

oak % i } i Algorithm demonstrated uses zero classical methods, treating the geometry of the
problem solely with neural networks and score based models.

INZ— (InZpg)

5 10
Dimension

* Work in progress, comparison to other neural methodsl#5.11.12], plenty left on the table

Evolution of likelihood constrained prior through a NS run Calculated log integral for Rosenbrock function in various dimensions to tune in the algo rithm.

Evolution of likelihood constrained prior through a NS run.

References: 6.[2205.15570] Ashton et al. Technical references:
7.[2011.13456] Song et al. - github.com/patrick-kidger/diffrax
1.[2303.09082] The Gambit collaboration 8.[2302.00482] Tong et al. - github.com/handley-lab/anesthetic
2.[2404.03002] DESI Collaboration 9.[2101.09604] Buchner - github.com/yallup/fusions

3.[1903.03704] Hoffman et al. 10.[1506.00171] Handley et al. - github.com/google/flax CAM B RI D GE
4.[2207.05660] Karamanis et al. 11.[2306.16923] Lange - github.com/google/jax

5.[2102.11056] Williams et al. 12.[1903.10860] Moss Cavendish Laboratory




Calculating entanglement entropy with
generative neural networks
Dawid Zapolski, Piotr Biatas, Piotr Korcyl,

Tomasz Stebel, Mateusz Winiarski
Jagiellonian University in Krakéw
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neural networks
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Calculating entanglement entropy with generative

neural networks

Autoregressive neural Entropy as a function of
network the subsystem size
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