The Calorimeter Pyramid Are you interested in a Pyramid Scheme?

Simon Schnake, Dirk Krücker, Kerstin Borras 29.04.24 **EuCAIFCon24**

Poster Wed 42

The Challenge **Modern calorimeters have millions of channels**

Poster Wed 42

Simulated view of one HGCal endcap, containing particles from the nominal 140 pileup interaction expected at the HL-LHC [D. Newbold - The High-Luminosity Upgrade of the CMS Detector]

How do you scale generative models to millions of cells?

Poster Wed 42

Sparse Super Resolution

or

The Calorimeter Pyramid Sparse Super Resolution

Poster Wed 42

First, learn all hit cells \rightarrow Second, learn the energies of the hits

Choose your Diffusion

Efficient and flexible ways to accelerate diffusion (DM/CFM) in HEP

Cheng Jiang, Sitian Qian, Huilin Qu

THE UNIVERSITY of EDINBURGH

2401.13162

Motivation

- The study focuses mostly on Score Matching, in which the score function is solved by different choices of SDE/ODE. How we could effectively accelerate the generative model, by replacing only parts of that.
- Backward process (training-free):

We have adopted almost all mainstream samplers/schedulers to do comprehensive comparisons on both shower cells (*CaloChallenge*) and jet constituents (*JetNet*)

Effective way to mitigate the challenging optimization: Denoiser function with preconditioning parameters, weighted by min-Signal-to-Noise ratio (min-SNR)

 $\mathcal{L} = \mathbb{E}_{t.\varepsilon}[w(t)]$

$$w(t) = (t *)$$

• Forward process (faster divergence):

$$t)||F(c_{in}x_t,t) - \frac{1}{c_{out}}(x_0 - c_{skip}x_t)||_2^2]$$

Results & More (Wed Loc #45)

Indistinguishable high-level features for shower from cell-level generations

Achieve O(10) acceleration with comparable performance for current benchmark models

How about replacing the backbone for the model? Changing flow matching with Unet/Transformer backbone to GBDT, which latter has much faster training and inference time. Is this even possible?? YES! (BUFF: BDT based-ultra-fast flow matching.) Few mins training, below millisecond generation time, could replace most flow-based model. E.g. Unfolding, huge improvement on correlation difference

		AUC	Separation	FPD
0.05 DDPM	DDPM 79/200/400	55.3/53.2/52.6	0.0810/0.0344/0.0155	0.074/0.046/0.043
0.5 0.04 0.04 0.03 0.03	EDM 39/79/200	54.1/ 52.0 /51.5	0.0256/0.0076/ 0.0055	0.035/ 0.027 /0.023
0.4 Speedup !!!	EDM_DPM++ 79	52.3	0.0103	0.026
	EDM_Lu 79	52.2	0.0086	0.026
0.2	Restart 18/36/79	55.2/ 52.0 /51.8	0.0169/0.073/0.0057	0.059/ 0.025 /0.022
р у 0.1	LMS 36	53.8	0.0305	0.095
	DPM++ 20	59.8	0.0534	0.146
Steps	Uni-PC 20	60.3	0.1304	0.152

fusions

Can we bring the latest developments in score based generative modelling to a nested sampling paradigm?

INFERENCE

Fundamental physics is full of hard inference problems. Our optimization or sampling algorithms have to be able to navigate complex geometry

BRIDGING DISTRIBUTIONS

Population Monte Carlo methods - particle filters - form bridges from known (prior) to complex unknown (posterior) distributions. Sequential Monte Carlo (SMC) and Nested Sampling (NS) are two variants evolving populations of points^[6]. Both give us access to the normalizing constant Z.

GEOMETRY

DIFFUSION

Diffusion models learn the gradient of the implicit density of a point cloud. Solving evolution through this field with Stochastic Differential Equation (SDE) or Ordinary Differential Equation (ODE) solvers yields Diffusion^[7] or Continuous flows^[8].

Neural learnt maps can transport any known distribution to an implicit target, no strict requirement on latent/prior!

P(0

IC NEUTRALISING BAD GEOMETRY IN BRIDGING INFERENCE PROBLEMS **DAVID YALLUP** yallup/fusions dy297@cam.ac.uk

RESULTS*

Diffusion models introduce time axis to the problem, bridging algorithms have another time axis we can efficiently evolve by fine tuning the score estimate.

Comparison to standard (non-neural) tools^[9,10] shows prom step samplers despite using rejection sampling, whilst mainta on benchmark challenging problems.

Algorithm demonstrated uses zero classical methods, treatin problem solely with neural networks and score based models

* Work in progress, comparison to other neural methods^{[4,5,11,} to tune in the algorithm.

References 1.[2303.09082] The Gambit collaboration 2.[2404.03002] DESI Collaboration 3.[1903.03704] Hoffman et al. 4.[2207.05606] Karamanis et al. 5.[2102.11056] Williams et al.

Technical references: echnical references: ejithub.com/patrick-kidger/diffrax ejithub.com/andley-lab/anesthetic ejithub.com/yalup/fusions ejithub.com/google/flax ejithub.com/google/flax

$N_{\rm live}=2000$ for all, otherwise following defaults. UltraNeat in 100 $N_{\rm like}$ projected after early termination due to exceeding walltime.				
θ	PolyChord fusions			
⁹ ⁹				
θ	θ ₈ θ ₉			
Partial corner plot of 10D Resenbrock function				
hows promising scaling, comparable to whilst maintaining accurate predictions				
thods, treating the geometry of the based models.				
methods ^[4,5,11,12] , plenty left on the table				
UNIVERSITY OF CAMBRIDGE				

Cavendish Laboratory

Calculating entanglement entropy with generative neural networks

Dawid Zapolski, Piotr Białas, Piotr Korcyl, Tomasz Stebel, Mateusz Winiarski Jagiellonian University in Kraków

Calculating entanglement entropy with generative neural networks

$$\downarrow \uparrow_{A}\uparrow \uparrow |\uparrow \downarrow_{B}\uparrow \downarrow$$

Quantum 1D Ising $S_n(A) = \frac{1}{1-n} \log \operatorname{Tr} \rho_A^n$

Classical 2D Ising

Calculating entanglement entropy with generative neural networks

Autoregressive neural network

$$q_{\theta}$$
 (s) = $\prod_{i=1}^{N} q_{\theta} \left(s_i | s_1, ..., s_{i-1} \right)$

Entropy as a function of the subsystem size

NATIONAL SCIENCE CENTRE