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Vaibhav Chahar

M.Smoluchowski Institute of Physics, Jagiellonian University




Description of the Model

e  The model is a discrete Z, Abelian gauge model on a 4D hypercubical lattice.

e  Closely related to ising model, shows a phase transition with decreasing temperature.
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Problems with Monte-Carlo




Variational Autoregressive Network (VAN)

e  Variational Autoregressive Network (VAN) used as a mechanism of providing uncorrelated proposals in a Monte Carlo
simulation.

The idea to use self-learning neural network as a sampler for MCMC called Neural Markov Chain Monte Carlo (NMCMC).
Two models are used: Fully Connected Autoregressive Network and PixelCNN.
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Facilities of the
/ KM3NeT Research Infrastructure

a KI\/BNeT A Distributed Research Infrastructure

KM3NeT: an underwater neutrlno telescope
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Detection of neutrinos from
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Currently 28 DUs deployed
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Machine and Deep Learning Projects in KM3NeT (non exhaustive list)

GNNs:

@ 1D 46: Artificial Intelligence techniques in KM3NeT

» Development of detector calibration and graph neural network-based selection and reconstruction algorithms for the measurement of oscillation parameters

with KM3NeT/ORCA (D. Guderian, PhD Thesis)
Data reconstruction and classification with graph neural networks in KM3NeT/ARCAG-8 (F. Filippini et al., PoS(ICRC2023)1194)

Cosmic ray composition measurement using Graph Neural Networks for KM3NeT/ORCA (S. Reck, PhD Thesis)
Optimisation of energy regression with sample weights for GNNs in KM3NeT/ORCA (B.Setter, MSc Thesis)
Tau neutrino identification with Graph Neural Networks in KM3NeT/ORCA (L. Hennig, MSc Thesis)

CNNs:
« Event reconstruction for KM3NeT/ORCA using convolutional neural networks (M. Moser, JINST 15 P10005)

Fully-connected NNs:
» Deep Neural Networks for combined neutrino energy estimate with KM3NeT/ORCAG (S. Pena Martinez, PoS(ICRC2023)103)

and several Machine Learning-based projects (e.g. BDTs, RFs) as part of online and offline physics analyses ...

Artificial \ET 1=
Intelligence Learning

in KM3NeT ' (BDT, RF NN)

KM3NeT, EuCAIFCon 2024 - E. Drakopoulou

KM3NeT:
an underwater neutrino telescope

The KM3NeT detectors: ARCA and ORCA

anca 1ee)
o0

e,

ARCA: Astroparticle Research
with Cosmics in the Abyss
Ortlmlsed for the detectlo
sources (oosmlc E 1¥eV)
* Currently 28 DUs deployed
ORCA: Oscillations Research
with Cosmics in the Abyss
*Optimised for atmospheric v
oscillation studies s(gtm v,
1-100 GeV)
«Currently 18 DUs deployed

I ARCA and ORCA use the same technology. ]
17" glass sphere equipped
with 31 3" PMTs

* Uniform angular coverage

* Directional information

« Digital photon counting
* Wide angle of view

Artificial Intelligence techniques in KM3NeT A it
CONFERENCE
Evangelia Drakopoulou on behalf of the KM3NeT Collaboration

Abstract: KM3NeT is a research infrastructure housing two underwater Cherenkov telescopes located in the Mediterranean Sea. It
consists of two configurations which are currently under construction: ARCA with 230 detection units corresponding to 1 cubic
kilometre of instrumented water volume and ORCA with 115 detection units corresponding to a mass of 7 Mton. The ARCA
(Astroparticle Research with Cosmics in the Abyss) detector aims at studying neutrinos with energies in the TeV-PeV range coming
from distant astrophysical sources, while the ORCA (Oscillation Research with Cosmics in the Abyss) detector is optimised for
atmospheric neutrino oscillation studies at energies of a few GeV. Artificial intelligence is increasingly used in KM3NeT for data
processing and analysis, aiming to provide a better performance on event reconstruction and significantly faster inference times
compared to traditional reconstruction techniques. Classical machine learning algorithms, mainly decision trees for event-type
classification, have been in use since the beginning of the project. These have been followed by deep learning algorithms such as
Convolutional Neural Networks (CNNs) and recently Graph Neural Networks (GNNs), which have been successfully employed for
event classification and neutrino property regression tasks. In this contribution, the artificial intelligence techniques used in KM3NeT,
the advances in the various physics analyses as well as the impact on the physics reach of KM3NeT detectors will be presented.

JINST 17 PO7038

The KM3NeT Collaboration

More than 65 Insfitutes 14 counifieé
in 4 continents.

EuCAIFCon 2024

[Artiﬁcial Intelligence Techniques]
Machine and Deep Learning techniques are extensively used in KM3NeT for the
discrimination between signal and background events, the distinction between different
event topologies (classification) and for the reconstruction of the particle vertex, direction
and energy (regression).

Graph Neural Networks (GNNs)
) Graph Representation:
) | * Each hit is one vertex in the graph
, ° * Each vertex has connections to its k nearest neighbours
o ° * Distance between vertices A and B measured by Euclidean distance
o % KM3NeT uses GNNs based on ParticleNet, the @) OrcaNet
o OrcaNeT. S —_— —

le:cnon Rcconstrucnon for ARCA6(w1th 6 DU s) l [Muon bu.ndlc mulnphc:ty reconstruction ]

GAN reconstruction for shower-lie et

GNN predicted muon
multiplicity for ARCAS.
Data/MC comparisons.

oo

Different GNN architectures (OrcaNeT, GraphNeT) are currently tested for the energy
reconstruction in KM3NeT/ARCA with 21 DUs and seem to result in comparable performances.

GNS based on TensorFlow were explored fi SD

event classification and neutrino propert) regression ||,
tasks for ORCA. i

E.ncrgy reconstruction  § w
r clectron neutrino &

ed current events ¢
in KM3NeT/ORCA §w 3

[LINST 15, 10005 | |48 oo
;ZUZD] }lo‘ -

re BDT score distributions for upward-
PoS(ICRC202311093

* oo 7 going ORCAG events.
CNNs can outperform the classical decision tree
methods for KM3NeT.



https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf
https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf
https://pos.sissa.it/444/1194/pdf
https://ecap.nat.fau.de/wp-content/uploads/2023/12/2022-07_Stefan_Reck_phd_GNN_ORCA_MuonBundles.pdf
https://drive.google.com/file/d/1TYsVkXVvdKS8qEW4S2muEGk7FnkBmwEw/view
https://ecap.nat.fau.de/wp-content/uploads/2023/06/2023-06_LukasHennig_MSc_ORCA_TauID_GNNs.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005
https://pos.sissa.it/444/1035/pdf
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The Landscape of Unfolding with
Machine Learning

N. Huetsch, J. Marino Villadamigo, A. Shmakov, S. Diefenbacher, SPONSORED BY THE
V. Mikuni, T. Heimel, M. Fenton, K. Greif, B. Nachman, D. Whiteson, A. Butter, T. Plehn N
arXiv: 2404 . XXXX % (F)?cézrjial\t/li?r:stry
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Inverting the LHC Simulation Chain

Forward

Machine learning methods allow for unbinned, high-dimensional unfolding

-—
Inverse



ML-based Unfolding

Reweighting based:

Omnifold Distribution Mapping

Pdata = Punfold
P gen — P unfold o unfo

unfolding inference
p gen ¢ > Punfold (X part)

N

simulation unfolding

)\ 4

forward inference
Psim < > Pdata (X reco )

Conditional Generative Unfolding

P (xpart | xreco) 3



Results |: Unfolding to pre-detector
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More with less: sparse kernel methods with dictionary learning /
Expressive, reqularized and interpretable models for statistical anomaly detection

UNIVERSITY Gaia Grossol’2’3, Demba Bal’z, Phil Harris!?
EUROPEAN AI FOR

I I I BB Massachusetts INISF Institute for Artificial Intelligence and Fundamental Interaction (IAIFI) FUNDAMENTAL PHYSICS

Institute of 2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA SMIT Laboratory for Nuclear Science, Cambridge, MA CONFERENCE
Technology EuCAIFCon 2024

GOAL

Signal-agnostic statistical detection of new physical processes
Maximum-likelihood-ratio goodness-of-fit test:

L(D|H,)
t(D) = ngxlog £(D|Ho) « n(x|Hg) = n(x|Ho) exp|fo(x)]
: PROBLEM
= —2min Ly r|fe
6 N How to design fy(x) to capture

rare and unexpected subtle perturbations
on top of the known physics?

LL.oss function: |

Lir[fo] = )  wo(z) (exp[fo(z)] — 1) — )  fo(x)

TER x D




More with less: sparse kernel methods with dictionary learning /
Expressive, reqularized and interpretable models for statistical anomaly detection

Gaia Grosso"*2, Demba Ba!*?, Phil Harris!*

UNIVERSITY
I BB Massachusetts INISF Institute for Artificial Intelligence and Fundamental Interaction (IAIFI) Fuﬁgiﬁiiﬁif {aﬂ?{félcs
I I I _'r"s:t“tle of 2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA *MIT Laboratory for Nuclear Science, Cambridge, MA CONFERENCE
echnology EuCAIFCon 2024
SOLUTION
Sparse linear combination of Gaussian Kernels (SGK) .
Local interpretability ﬁ?ﬁ ¢ n(x|Data)
. . . . (o]
Active kernels highlight anomalous regions | 5ot == nlx| Reference)
_ - 10"} o n(x|Reference) - e/6™® |
Bl g | 1 |
M i 20; ] >
Fiw@ = ) wik(x; ;. 0)
‘1 Sparse model (M << N)
competition between data points to attract the
kernels 10~
Adaptive model (learnable y) -
directing attention to anomalous features b=
-
o
2 2 2 =
Smooth model (6” = o, + o)

Physics constraints (e.g. experimental resolution).
What is the scale of New Physics? X



More with less: sparse kernel methods with dictionary learning
Expressive, reqularized and interpretable models for statistical anomaly detection
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Want to know more?

Drop by LOC 8
on Wednesday

for the poster session
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