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Standard Model Higgs boson decays 
preferentially to a pair of b-quarks

Jet flavour tagging in high energy physics 

Modern NN flavour 
tagging algorithms do not 

explicitly fit secondary 
vertices…



NDIVE (Neural DIfferentiable VErtexer) 
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 NDIVE integration into NN 
flavour tagging model 

improves performance:

 fully integrated and jointly optimizable;

explicitly introduce physics knowledge into NNs!



NDIVE (Neural DIfferentiable VErtexer) 
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 NDIVE integration into NN 
flavour tagging model 

improves performance:

 Significant improvements possible
with better track selection!

 “perfect”
track 

selection



Introduction

Introduction

• PINNGraPE is a PyTorch algorithm which does PE for a
Gravitational-Wave (GW) signal’s source thanks to a
Physics-Informed Neural Network (PINN) [?].

• We solve (1) thanks to a
Recurrent Neural Network
(RNN) with a Runge-Kutta in-
tegrator at 4th order imple-
mented inside.
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Introduction

Results

η Mtot [M⊙]

Simulated data’s values 0.2500 60.00
Guess values 0.1000 80.00

Inferred values 0.2507 59.95

• Final loss value: 2.385 · 10−2.
• βf = 1, βt = 0, βh = 1019.

• AdamW optimizer, lrη = 10−4,
lrMtot

= 10−2 (both fixed).

• Total time: ∼ 1 hour on CPU (4000
epochs).
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Conclusions

• PINNGraPE is able to infer η and Mtot values with 10−2

relative error from frequency and strain data,
implementing 1.5PN formalism.

• Near future steps:
• to build a real dataset spanning a physical parameter space;
• to test robustness against noise and glitches;
• to extend the number of parameters to infer.

• (Not so) remote future step:
• use of cWB real outputs,
• apply PINNs approach to TOV equations, in order to constrain

NS’s equation of state.
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Samples:  ϕ ∼ e−S[ϕ]

Lattice Quantum Field Theory

x2

ϕ(x)
S[ϕ] = ∫ dDx

1
2 ((∂μϕ)2 + m2ϕ2) + λϕ4

⟨𝒪[ϕ]⟩
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x1

( = it)

as a sampling problem

p(ϕ) ∝ e−S[ϕ]

estimate observables

(Euclidean) action



bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

built-in 
symmetry

continuous 
flow

transfer 
learning 

λ = 0.7

λ = 0.8

·f = gθ[ϕ]

Computable likelihood

ϕ1ϕ0
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L=6

L=12

trivial theory interacting theory

Generative models



Importance 
nested sampling 
with normalizing 
flows
(for gravitational-wave 
inference)

Michael J. Williams, John 
Veitch, Chris Messenger
arXiv:2302.08526

nessai

Nested sampling + normalizing flows

➕ Improved sampling efficiency
➖ Limited by nested sampling design

Can we accelerate nested 
sampling with machine learning?
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Importance 
nested sampling 
with normalizing 
flows
(for gravitational-wave 
inference)

Michael J. Williams, John 
Veitch, Chris Messenger
arXiv:2302.08526
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Importance nested sampling + 
normalizing flows

➕ Addresses the main bottlenecks
➕ Further improvements to sampling 

efficiency

What if we design a nested 
sampling algorithm around 
normalizing flows?
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