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Jet flavour tagging in high energy physics
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fully integrated and jointly optimizable;
explicitly introduce physics knowledge into NNs!
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Introduction

® PINNGraPE is a PyTorch algorithm which does PE for a
Gravitational-Wave (GW) signal’s source thanks to a
Physics-Informed Neural Network (PINN) [?].
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® We solve (1) thanks to a g 71 Meed @
Recurrent Neural Network L:%ij\fk—f(rkm
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Results

H
S

|
<

o

—0.05

-0.10

|
o
-
«

Boe N
o u o 0 o

Miot = Mror, true [Mo ]

-5

Matteo Scialpi

guesses: N = 0.1, mtot = 80.0 M

0 5000 10000 15000 20000 25000 30000
Epoch

Time residuals [s]

Strain residuals [1/VHz]

Frequency residuals [Hz]

oL N w B U

o
o
@

0.02

0.01

0.00

0.0

-0.5

-1.0

-15

guesses: eta = 0.1, mtot = 80.0 Mo

—— before training
—— after training

—— before training
—— after training

le-18

—— before training
—— after training

-0.10 -0.08 -0.06 —0.04

Time to coalescence [s]

—-0.02 0.00

EuCAIFCon 2024

PINNGraPE

1/2



Introduction
ooe

Conclusions

® PINNGraPE is able to infer n and M;,; values with 1072
relative error from frequency and strain data,
implementing 1.5PN formalism.

® Near future steps:

® to build a real dataset spanning a physical parameter space;
® to test robustness against noise and glitches;
® to extend the number of parameters to infer.

¢ (Not so) remote future step:

® use of c(WB real outputs,
® apply PINNs approach to TOV equations, in order to constrain
NS's equation of state.
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Lattice Quantum Field Theory

as a sampling problem

(Euclidean) action

¢ (x) : i
i) = | d%x - ((aﬂqb)z + m2¢2> + A

p(p) x e*17]

estimate observables
Samples: ¢ ~ ¢ 9] - (O[¢])
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Generative models

bijection f
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“Normalizing flow”
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continuous built-in transfer
flow symmetry learning
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Importance Can we accelerate nested
nested sampling sampling with machine learning?
with normalizing

flows

(for gravitational-wave nessai

inference)

Nested sampling + normalizing flows

== |Improved sampling efficiency

Michael J. Williams, John T , _
Limited by nested sampling design

Veitch, Chris Messenger
arXiv:2302.08526
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Importance What if we design a nested
nested sampling sampling algorithm around
with normalizing normalizing flows?

flows
(for gravitational-wave

i-nessai

inference)

Importance nested sampling +

Michael J. Williams, John normalizing flows

Veitch, Chris Messenger == Addresses the main bottlenecks
arXiv:2302.08526 == Further improvements to sampling
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