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e Numerous applications (eg. scheduling, 2 — Z S
register allocation ) B 9]

e Can be studied using statistical mechanics.
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Preliminary results
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BOOSTED PARTICLE RECONSTRUCTION
WITH GRAPH NEURAL NETWORKS

Jacan Chaplais, Srinandan Dasmahapatra, Stefano Moretti

TRADITIONAL RECONSTRUCTION PIPELINES

Data generation Jet clustering
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Tagging Jet grooming

That’s a top! <

Remov fdd

« Data is generated by simulation or

experiment

« Tight, high momentum clusters (jets) of light

particles form on detector walls

« Jets let us study particles which they

decayed from

* Current methods based on physics theory,

but only utilise momentum data



Probability density

Top quark mass distribution

LABELS FROM
SIMULATIONS

Possible to track back from detected [ Stat
particles to original

C h a I Ie n g i ng Wh en CO I 0 urs h a d ro n i Se / Input: DAG, Status Codes, Four-Momentum, Colour Codes /

o Mixed ancestry

Locate partons outgoing from hard process from status codes

Our novel method (right) combines
more simulation data to fix this

Traverse DAG descendants from these partons
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GRAPH NEURAL NETWORK PIPELINE +
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Feeding our GNN models simulation-informed labels for the simpler case of Higgs datasets
shows improved performance over anti-.

There is no need for combining, pruning, and tagging, as these are learned implicitly!

Higgs mass reconstruction
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For more information, visit my poster on

Wednesday, during Session A, in Location 20!

OUTLOOK

* Investigate training on
top quarks

* Check performance
against taggers

THANK YOU




Accelerating the search for mass bumps

using the Data-Directed Paradigm
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Invariant mass histogram

We want to maximize our chances to find new physics in collider data

Train a neural network to identify mass bumps in real data without the
need of simulation or analytical fit to estimate the background
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* Exploit the discovery potential of the data

* Impossible to check all final states with a traditional analysis

* Many possible resonances in unexplored final states > bumps

Existing searches for two-body resona nces!"
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Promising result

* Finding the Higgs bump
* Predicted significance matches the ATLAS significance within error [2]
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[2] ATLAS Collaboration. Physics Letters B 716 (2012). doi:10.1016/j.physletb.2012.08.020 4



Please visit our poster !
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What ? Train a neural network to identify mass bumps in real data without the
need of simulation or analytical fit to estimate the background

‘ Why?  Exploit the discovery potential of the data.
r e S ‘ ‘ ° = Impossible to check all final states with the traditional analysis

= Many possible resonances in unexplored final states - bumps

Data Directed digm for bump h

> The Data-Directed Paradigm (DDP) is a search strategy to efficiently identify
regions of interest in the data. It requires two ingredients:
= Property of the Standard = Tool to scan the observable-
b Model (SM) on which space in search for deviations
deviations can be searched for
NN mapping invariant mass to

smoothly falling invariant
moothly falling Invariant mass  tatistical significance for bumps

> Network mapping invariant mass distributions to statistical si 8]

> Using the Dark Machines dataset [2]
= Designed to test anomaly detection techniques
= Dataset equivalent to 10 fb* with highest cross section processes at the LHC

» Mass with all possible jinations of the following objects:
= Electron = Photon = Reconstructed leptonicZ = Boosted top
= Muon = Jet = Boosted hadronicW/Z = High mass jet (m > 200 GeV)

> Additional kinematics cuts on missing energy (MET) and transverse momentum (p)
of leading objects

> split the data according to jet multiplicity to improve S/8 ratio and reduce the look-
elsewhere effect

» Total of 30 000 mass histograms ‘
> Rebinning that reflects the detector resolution, using py ~ m/2

= Resolution is higher for "KL .
m(4j) than m(3j), and for %
smaller masses
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Binning reflects this with
larger bin width when
resolution is smaller 0t
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Performance and finding Beyond the Standard Model BS;\;I‘) ignals

> Accurately predicts maximum > Excellent discriminating

= Input: synthetic distributions obtained via Poisson fluctuation of a smoothly
‘ falling background and an injected Gaussian signal

= Target: Bin-by-bin significance of a potential signal with respect to the smooth
a ° background, calculated using the profile likelihood ratio hypothesis test

Neural network architecture

> Use of 1D convolution layers followed by a dense layer
> Intuitive and agnostic to the number of bins in the histogram
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> Synthetic data generated by injecting a Gaussian signal on two types of
backgrounds: ! ! !
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= Analytical functions \ "

= Fits to simulation data et
(e.g. Dark Machines sample)
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> Poisson fluctuation allows for a more realistic distribution
) » The statistical significance is calculated by using the profile likelihood ratio
test for a signal to be found in each bin
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with no bias and a performance with an AUC of 0.900
variance of +0.64

1) > Promising results when finding the Higgs bump
= Predicted significance matches the ATLAS significance within error [3]
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+ Successfully finds theorized BSM signals over the Dark Machines background
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» Other BSM signals found include LQ — beby, bebe and 2’ — 31
» 0.1% false positive rate over background-only sample
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