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Magnet Design Optimisation with
Supervised Deep Neural Networks
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Learning new physics
with a kernel machine

Marco Letizia

Machine Learning Genoa Center and INFN

In collaboration with: P. Cappelli (UniPd), G. Grosso (IAIFI-MIT), N. Lai (UniPd), M. Pierini (CERN),
L. Rosasco (UniGe-MaLGa), A. Wulzer (IFAE), M. Zanetti (UniPd).
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Learning new physics with a kernel machine

GOAL: search for rare/hidden new physics in high energy physics data.

PROBLEM: most analyses are model-dependent

> heavily biased towards specific theoretical models.
Agnostic searches are hard to design:

large volumes of mutivariate, complex data.

To maximise the discovery potential at the LHC (and future experiments!),

it is crucial to develop hypothesis testing methodologies based on new paradigms!
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Learning new physics with a kernel machine

The New Physics Learning Machine
A likelihood-ratio test with a data-driven alternative hypothesis

ny(x) = eWOn(x|R) - t,(D) = —2log f&%))
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* Unbinned

* Multivariate

* Signal-agnostic

* Efficient and robust machine learning
e Statistically sound

* Distribution and normalization shifts
* No data splitting
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number of events, and outputs the extended likelihood-ratio test statistic
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After estimating the distribution of the test statistic under the null hypothesis (e.g.
with reference-distributed pseudo-experiments, bootstrap or permutations), the
p-value and Z score associated with the observed data can be computed
o
Pane= [ depCH), 2= 071
tp(RD

= p(tlHo)

We focus here on the implementation based on kernel methods and the Falkon
library, highly performant while extremely efficient.>% It is based on a weighted
logistic loss

N(R
20y, f(x) = % (1—y)log(1 +e/®) + ylog(1 +e/®),
=
with regularization term 1 ||f||Z, and considers functions of the following form
M 2
=Y w2, k)= ep- X1
i=1

where {%y, ..., ¥y} is a set of points selected uniformly at random from the training set,
known as centers.

o2

Model-selection. The three main hyperparameters are tuned using only reference
data to avoid any bias towards the data of interest. The criteria for their selection
arel!2l:

* The Gaussian width o is selected as the 90th percentile of the pairwise distance
among reference-distributed data points.

* To achieve optimal statistical bounds and preserve performance, the number of
centres M must be at least be of order VN, with N the size of the dataset.[3!

* The L2 regularisation parameter 1 is kept as small as possible while maintaining a

stable training.
\

obs

* Etraining = 2 sec

Multivariate benchmarks
DATASET: DIMUON (5D) , SUSY (9D), HIGGS (21D)
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Foundations Model-independent searches Data Quality Monitoring
The New Physics Learning Machine!"! is a methodology powered by machine || Experimental measurements are compared with a reference sample from the Standard || NPLM for monitoring particle detectors in real-time.!s!
learning to perform a likelihood-ratio two-sample test that is unbinned, multivariate, || Model without relying on any specific signal hypothesis.!?! * Reduced scale CSM drift tubes. * Data: 4 drift times, crossing angle.
scalable, signal agnostic, sensitive to distribution shifts as well as normalization 1D benchmark * Anomalies: lowered cathodic strip voltages and front-end thresholds.
effects, and without data splitting. The goal is to compare an observed set of data * Tiraining = 0.5 sec
with the prediction of a reference model. The NPLM model is trained as a supervised
classifier on a reference sample NPLM (5D) ::T:"y”'"x:: OO
R= (k% x~p&IR), hE P o2 ¥ oo
and a data sample "2'?5” gg 3‘13 EE E‘:; Eg
D= {xi)?,:z’p % ~ Do (). Thohod 2% <10 o aw am o o
It learns the density ratio
. Nerue (%) Ny = =
e =log i, Na = 200k, N(R) = 2000
where n(x|-) = N(-) p(x| -) is the probability density normalized to the expected * N(8) =10 (tail), 90 (bulk/non-res) ZZ"‘ :: :: :;

Evaluation of generative models
The efficiency of the kernel-based model opens the door to several applications. We
show here a first test on the evaluation of generative models.
« Data— correlated mixtures of three Gaussians in four dimensions.
¢ Model— normalizing flow: RealNVP.
Architecture — models1,2 and 3: 3x64 hidden layers; models 2, 4 and 6: 3x128
hidden layers.
Training — models 1 and 2 are trained with 100k samples, models 3 and 4 with 200k
and models 5 and 6 with 500k.
NPLM test — size of reference sample: 100k; size of data samples: 10k; average
training time = 1 sec.

A good correlation between the average Z scores with the number of training examples
and the model complexity can be observed.

On the right-side plot we show the results of a dimension-averaged KS test on the
best and worst models.

Multiple testing

Model selection can bias the test towards certain signal hypotheses.
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Multiple testing strategies can be leveraged to tame this effect and obtain a more
uniform response. The following approaches are considered:

 Fused-t: thusea = logn ™' Li; expt;
« Fused-p: Prusea = —logn™" ZiL; exp(—p;)
« Min-p: Pmin = —log min p;

In the first case, the new test statistic is obtained by combining the local variables {t;}
with a smooth maximum while in the other two, the local p-values are used (smooth
minimum and minimum).

The different tests are characterized by the following kernel widths:
o €[0.1,0.3,0.7,1.4,2.4,3.0].

i bump. Non-resonant Bk bump.
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The fused-p NPLM combined test shows an advantaged when compared to the other
methods, including the standard NPLM (o = 2.4). These results suggest that higher
sensitivity can be achieved with this strategy while reducing the dependence on hyper-
parameters.

[1] Grosso et al, Goodness of fit by Neyman-Pearson testing, SciPost Physics 2024, 2305.14137; [2] Letizia et al, Learning new physics efficiently with nonparametric methods, EPJC 2022, 2204.02317; [3] Meanti et al, Kernel methods through the roof: handling billions of points efficiently, NeurlPS 2020, 2006.10350;
[4] Coccaro et al, Comparative Study of Coupling and Autoregressive Flows through Robust Statistical Tests, 2302.12024; [5] Grosso et al, Fast kernel methods for data quality monitoring as a goodness-of-fit test, MLST 2023, 2303.05413.
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Xue-Ting Zhang, Searching for gravitational waves from stellar-mass binary black holes early inspiral [Wed, 21]

:<| BBH gravitational waves and TianQin G

Credit: Jun Luo, 2015

Binary
> 1
GW data analysis ..
Signal: s(8) Signal Detection Observable: d = s(0) + n

Parameter Estimation
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There are lots of gravitational wave cycles in band.
The use of the match-filtering method is computationally prohibitive due to the immense template bank( over1031)



Xue-Ting Zhang, Searching for gravitational waves from stellar-mass binary black holes early inspiral [Wed, 21]

*J Challenges G

* Signal morphology:
1. Many data point; 10° with a duration spanning three months.
2. Intense oscillations observed due to the detector's modulation.
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<EE The signal from a GW190521-like binary black
e hole system. The observation period spans

o 10-22 LA three months, with a sample rate of 0.25 Hz.
9 The number of data point is 972001.
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Xue-Ting Zhang, Searching for gravitational waves from stellar-mass binary black holes early inspiral [Wed, 21]

*] Compression and Search ba
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Searching for Dark Matter
Subhalos in Astronomical Data

using Deep Learning

Speaker: Sven Péder

_ Also go check out poster of
& UNIVERSITY or TARTU | A | Maria Benito Castaio

U - Tarty Observatory \ ‘ :
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_— Starsin the Galaxy The SIQnaI \.’ve are
W 7 | ~ looking for
ﬁ Orbiting subhalo imprints a L | |

ﬁ’ : gravitational signature in the
' ﬁ | ~ position and velocity of stars

ﬁ : Can we detect these
' disturbances from the
~data?

ﬁ ‘ ﬁ The abundance of subhalos is a function of the DM
, - model -> constraining the subhalo mass function a
ﬁ -way to study the nature of the DM particle

Sven Poder



Ongoing work

On constraining the. Studying S
subhalo mass function.. @ detectability in N-body

| simulations
doi:10.1016/j.ascom.2022.100667 sk BN
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