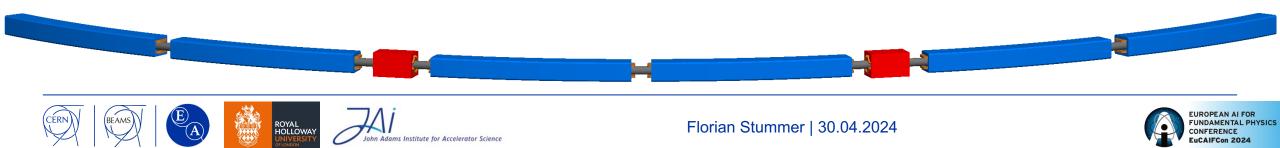
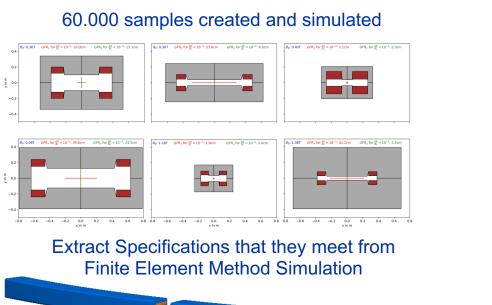
Magnet Design Optimisation with Supervised Deep Neural Networks

<u>F. Stummer</u>^{1,2}, E. Andersen¹, D. Banerjee¹, A. Baratto Roldan¹, J. Bernhard¹, S. T. Boogert³, M. Brugger¹, N. Charitonidis¹, M. Deniaud², L. A. Dyks¹, L. Gatignon^{1,4}, S. Gibson², A. Goillot¹, M. Jebramcik¹, A. Keyken², F. Metzger¹, R. Murphy^{1,2}, L. J. Nevay¹, E. Parozzi¹, B. Rae¹, S. Schuh-Erhard¹, W. Shields², L. Suette¹, M. Van Dijk¹, A. Visive^{1,5}, T. Zickler¹

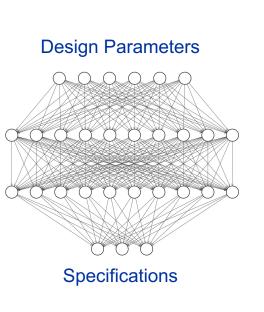
¹ CERN, 1211, Meyrin, Switzerland
 ² JAI at Royal Holloway University of London, TW20 0EX, Egham, United Kingdom
 ³ UMIST, Manchester, M60 1QD, England, United Kingdom
 ⁴ Lancaster University, LA1 4YW, Lancaster, United Kingdom
 ⁵ KTH Royal Institute of Technology, 114 28, Stockholm, Sweden



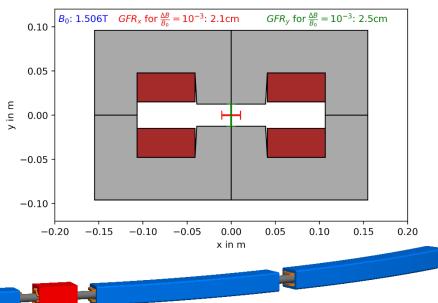
Magnet Design Optimisation with **Supervised Deep Neural Networks**



Deep Neural Network



Optimiser



Florian Stummer | 30.04.2024

plug into

Marco Letizia

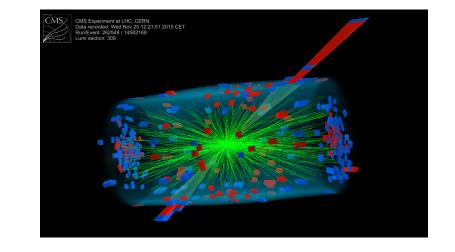
Machine Learning Genoa Center and INFN

In collaboration with: P. Cappelli (UniPd), G. Grosso (IAIFI-MIT), N. Lai (UniPd), M. Pierini (CERN),

L. Rosasco (UniGe-MaLGa), A. Wulzer (IFAE), M. Zanetti (UniPd).

GOAL: search for rare/hidden new physics in high energy physics data.

PROBLEM: most analyses are model-dependent
→ heavily biased towards specific theoretical models.
Agnostic searches are hard to design:
large volumes of mutivariate, complex data.



To maximise the discovery potential at the LHC (and future experiments!), it is crucial to develop hypothesis testing methodologies based on new paradigms!

 $\square p(t|H_o)$

50

60

30

t

40

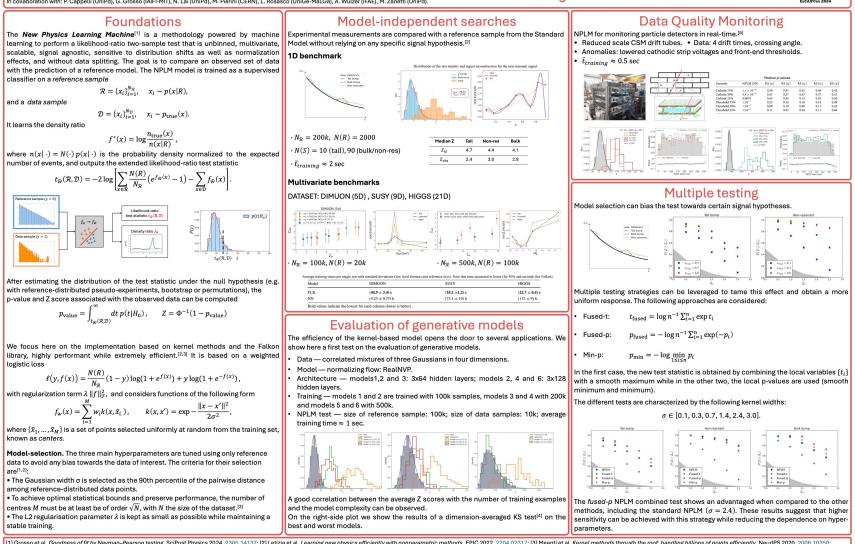
The New Physics Learning Machine

A likelihood-ratio test with a data-driven alternative hypothesis

 $n_w(x) = e^{f_w(x)} n(x|R)$ $\rightarrow t_w(\mathcal{D}) = -2 \log \prod_{x \in D} \frac{\mathcal{L}_w(x)}{\mathcal{L}(x;R)}$ 0.10 Unbinned 0.08 Multivariate P(t)Signal-agnostic 0.04 Efficient and robust machine learning 0.02 Statistically sound • Distribution and normalization shifts 0.00 10 20 $t_{\widehat{w}}(\mathcal{R},\mathcal{D})$ No data splitting • **UniGe**

Marco Letizia – Machine Learning Genoa Center and INFN

In collaboration with: P. Cappelli (UniPd), G. Grosso (IAIFI-MIT), N. Lai (UniPd), M. Pierini (CERN), L. Rosasco (UniGe-MaLGa), A. Wulzer (IFAE), M. Zanetti (UniPd).



Uni**Ge** MalGa

INFN

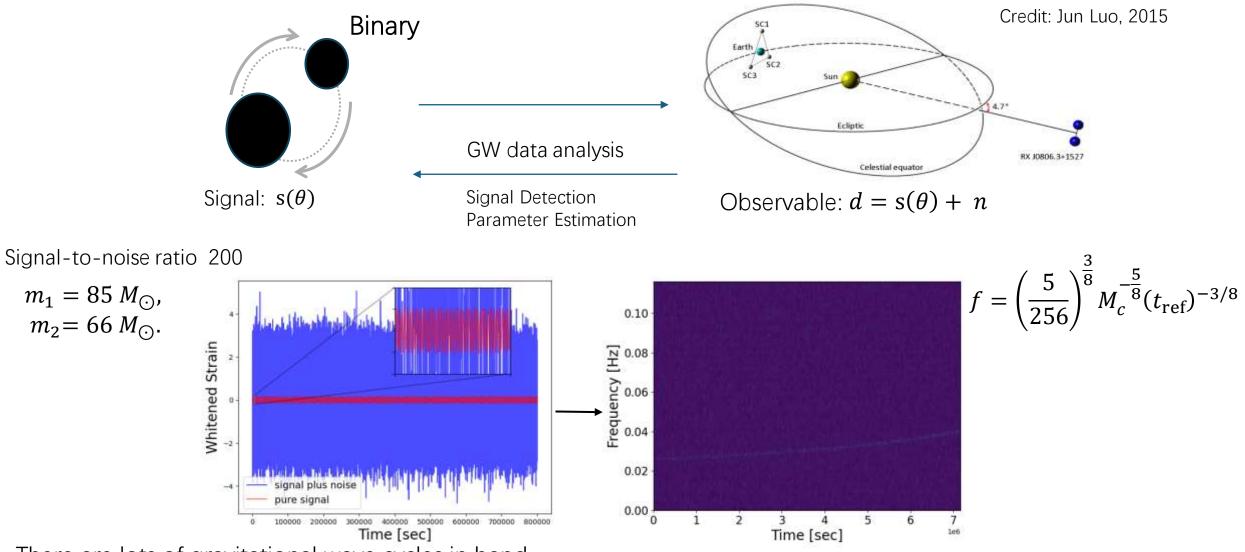
erc

[1] Grosso et al, Goodness of fit by Neyman–Pearson testing, SciPost Physics 2024, 2305.14137; [2] Letizia et al, Learning new physics efficiently with nonparametric methods, EPJC 2022, 2204.02317; [3] Meanti et al, Kernel methods through the roof: handling billions of points efficiently, NeurIPS 2020, 2006.10350; [4] Coccaro et al, Comparative Study of Coupling and Autoregressive Flows through Robust Statistical Tests, 2302.12024; [5] Grosso et al, Fast kernel methods for data quality monitoring as a goodness-of-fit test, MLST 2023, 2303.05413.

Poster Session A - Wednesday 12:00 - 15:00

Xue-Ting Zhang, Searching for gravitational waves from stellar-mass binary black holes early inspiral [Wed, 21]

BBH gravitational waves and TianQin



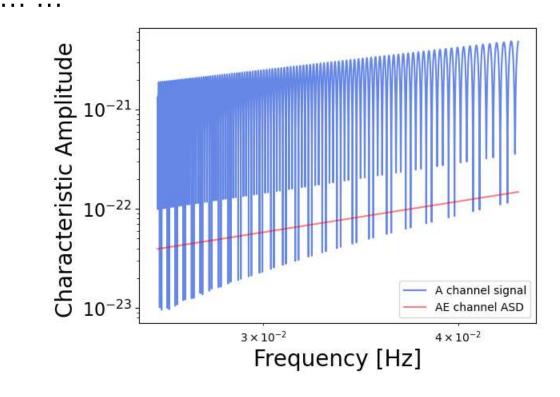
There are lots of gravitational wave cycles in band.

The use of the match-filtering method is computationally prohibitive due to the immense template bank($over 10^{31}$)

Xue-Ting Zhang, Searching for gravitational waves from stellar-mass binary black holes early inspiral [Wed, 21]

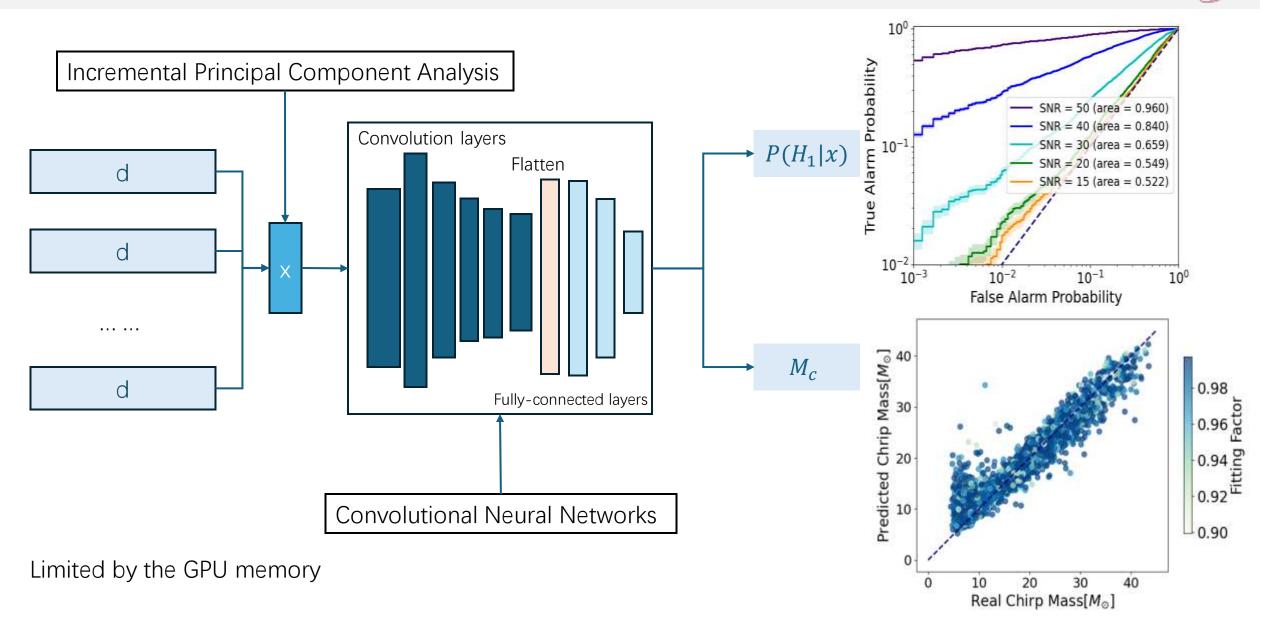
Challenges

- Signal morphology:
- 1. Many data point: 10^6 with a duration spanning three months.
- 2. Intense oscillations observed due to the detector's modulation.



The signal from a GW190521-like binary black hole system. The observation period spans three months, with a sample rate of 0.25 Hz. The number of data point is 972001. Xue-Ting Zhang, Searching for gravitational waves from stellar-mass binary black holes early inspiral [Wed, 21]

Compression and Search



Searching for Dark Matter Subhalos in Astronomical Data using Deep Learning

Speaker: Sven Põder

Tartu Observatory

Also go check out poster of María Benito Castaño

EuCAIFCon 2024

Stars in the Galaxy

The signal we are looking for

Orbiting subhalo imprints a gravitational signature in the position and velocity of stars

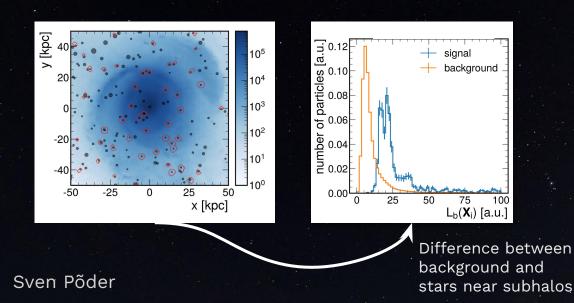
Can we detect these disturbances from the data?

5

The abundance of subhalos is a **function of the DM model** -> constraining the subhalo mass function a way to study the nature of the DM particle

On constraining the subhalo mass function..

doi:10.1016/j.ascom.2022.100667 Star-by-star anomaly detection in galaxy simulations



Ongoing work Studying signal detectability in N-body simulations

