Foundation models & scientific discovery

Tobias Golling, University of Geneva Lukas Heinrich, Technical University of Munich

Setting the stage

- Supposed to be interactive
- Think out loud, brainstorm,...
- Comment & vote on SpeakUp

This is just the **first step!**

 Follow up, please fill out: <u>https://bit.ly/eucaifcon24-wg1</u>

Let's get right into it

Will we ever be able to talk to whales?

Part 1

The promise of foundation models

What is a foundation model?

You heard the word already dozens of times at this conference !

Definition?

Examples?

Characteristic features of a FM

Pre-train using SSL – no labels needed

"Meaningful data representation," "Implicit model"

Transferrable & finetunable: *Easy* to adopt to multiple downstream tasks

Multimodality character: *one model to do it all* – common embedding / no pairing needed

FMs = stochastic generative models with high expressiveness and outstanding interpolation and generalization power in ultra-sparse training data spaces of high dimensionality.

7

Pre-training

- Masking
- Augmentation
- ... novel training schemes / physics-inspired?
- Need for auxiliary tasks?
- Encode physics as inductive bias? Flexible prior [Miles]

• Evaluation – go beyond downstream task?

Foundation models: learned *meaningful* latent representations

Learn true underlying objects (latent variables) from observed data (shadows)

Compare with our embedding spaces

- Our **reconstruction** is a common embedding space of our data
- Our **theory space** is a multi-modal common embedding space (e.g. combined fits, combination plots)
- What does FM add to this?
 - End-to-end
 - Differentiable
 - **Democratize** AI commonly trained [Anna Scaife]
 - Common model across subdetectors, experiments,...
 - Independent of **theory**? Add theory as a modality?
 - ...?
 - Al oracle ⇔ interpretability
 - Matt: machine understands & explains it to 5-year old
 - Miles: symbols \rightarrow selection effect [+, x], simplicity generalizes well

Shared model / embedding space across

- ... multiple subdetectors?
- ... multiple LHC experiments?
- ... multiple HEP experiments?
- ... between Astro / HEP experiments?
- ... beyond?
- ... the utility of language & LLMs?

What can this EuCAIF WG do?

Community consensus [see ML4Jets]

Sample over all of you

Identify trends

Snapshot: white paper (?)

Continued effort: workshops, seminars, exchange,... 2. What makes a question interesting?

- It connects to nature
- You can make progress on it
- Someone else thought it was interesting
- It is related to something someone else thought was interesting

Can ML answer this?

Not yet. But soon.

Much harder problem

Matt's talk from this morning

Facilitate collaboration

- What is needed?
- Harmonizing / publicizing datasets
 - MNIST of PP [challenges e.g. HiggsML, TrackML,...]
 - Scaling up: 100M jets \rightarrow 10B jets \rightarrow ...
 - How to meet scaled up compute (GPU) needs?
- Community benchmarks & metrics / evaluation
- Common software framework?
- Interface with **experiments?**
- •
- (Big) European funding tools?

Questions, comments, suggestions,...

Reminder

Stay involved

Add your thoughts, comments, suggestions, preferences here: https://bit.ly/eucaifcon24-wg1

Who is using foundation models?

Who plans to use foundation models?

More thoughts?

Part 2: discovery

Optimal search for the unknown

- Trade-off between **generality** and **specificity**
- Knob to tune pareto optimality between the endpoints: supervised & unsupervised
- What metric to assess performance should not be known models
- What's the **follow-up strategy** after an "anomalous" signal ?
 - Balance cost of follow-up against frequency alerts ?

Automation Automation Automation

- Which tools are needed to automate analyses /
 interpretations efficiently
 - Fast approximate detector simulation
 - Fast approximate analysis implementations
 - Full recast capability
- Which Data Products are needed (and be public?)
 - Public likelihoods (neural approximations?)
 - Public models

Interface: foundation models & discovery

- Common / portable model [efficient]
- Allows to accelerate and automate cycle of scientific method

Backup: one-slide primer on search strategy

- <u>NP</u>: best test statistics is full high-dim LH ratio = p_0/p_1
- Add realism:
 - Finite statistics + syst. \Rightarrow data selection, factorise LH $\Rightarrow \sum$ LH
 - Time sink: MC simulation/calibration/syst. & analysis optimization
 - Finite person power \Rightarrow **Automate**
 - Finite compute \Rightarrow **Fast solutions**
 - Finite belief in BSM ⇒ Hedging / diverse approach
 - Definition of coverage (metrics) / Bayesian: vary prior (model / learn p1)*
 - Tune continuously power of test vs. assumptions
 - Look elsewhere ⇒ Minimum #tests
 - Interpretation \Rightarrow Benchmarking, reinterpretation

*Flexible enough to approximate true hypothesis & regularized enough to be insensitive to statistical fluctuations

Thank you !