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Max Welling’'s talk

"Where is fundamental physics in Al4Science?” — Lukas Heinrich

e Hint: was not referring to condensed matter physics
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Al for Science Workshop Series

Al for Science
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Compare with Big Data

Business emails sent
3000PB/year In 2012: 2800 exabytes
(Doesn’t count; not managed as created or replicated
a coherent data set) 1 Exabyte = 1000 PB

~14x growth
expected 2012-2020

LHC data
15PB/yr
Current ATLAS

data set, all data
products: 140 PB

US




What are some of the dominant narratives
about Al for Science?

How does fundamental physics fit in?
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5. Al/ML + Simulation + Data

Al4Science to empower the fifth
paradigm of scientific discovery

Published July 7, 2022

By Christopher Bishop, Technical Fellow and Director, Microsoft Research Al4Science

Share this page f y m 6

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

~ TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE




"The underlying physical laws necessary
for the mathematical theory of a large part
ot physics and the whole of chemistry are
thus completely known, and the difficulty
is only that the exact application of
these laws leads to equations much too
complicated to be soluble.”

—-PAUL DIRAC



Simulation & Emulators

Ameortigation through Simalation

EuCAIFCon 2024

Simulate train NN surrogate emulate JENAA

Joint ECFA-NUPECC-APPEC Activities
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Al/ML as emulators of complex simulations

Representation

as particle system

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W Battaglia, arXiv:2002.09405
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In fusion energy

o%%o Research

Accelerating fusion

science through learned
plasma control

February 16, 2022

Successfully controlling the nuclear fusion plasma in a tokamak with deep
reinforcement learning



Verena Kain's talk

Differentiable simulation codes @)

Nyl

Optimisation algorithms work best and are most sample-efficient with gradient
information of the objective function.

7’ achine Learning Applications

for Particle Acceleratoré ‘ _ B NEEENEES CONTACT US Cheetah — A High-speed Differentiable - A .

Beam Dynamics Simulation for

A physics-informed prior can help improve the performance

of BO by preventing over-exploitation.
Machine Learning Applications -

* Cheetah’s differentiability allows efficient acquisition
function optimisation using gradient descent methods in
modern BO packages like BoTorch.

Gradient-based Tuning + Has well-defined behaviour and does not need data to train
Transverse beam tuning at ARES like neural network priors.

« Tune magnet settings or lattice parameters using the gradient of the « Can be used in combination with gradient-based system
beam dynamics model computed through automatic

differentiation. identification to overcome model inaccuracies.
« Seamless integration with PyTorch tools tuning neural networks. 1

« Becomes very useful for high-dimensional tuning tasks (see
neural network training).

Objective value

Model

Input variable

Deviation from target /
ground truth
!
“%

Actuator / unknown variable

AT for particle accelerators, EuCAIF, V. Kain, 01-May-2024

AT for particle accelerators, EuCAIF, V. Kain, 01-May-2024

Reinforcement Learning (RL) )
RL4AA - workshop <)

Learn dynamics (once and for all) through trial-and-error, no

. . ) =S
Pushing the frontiers of RL for accelerators — autonomous accelerators. exploration after training!
reward
N ) . j . -
(RLAGENT —— (T | Next generation accelerators to be built for
To(s,a) ." RL:
action . . . -
ReinforcementLoarningfor | 4 AA CORRECTORS — fast executing (accurate) simulation / digital
Autonomous Accelerators | T \ tWi n
parameter 0 .
for training
L J \. J
observation — instrumentation designed with control
RL setup for trajectory steering algorithm
RL4AA Collaboration — -

The Reinforcement Learning for Autonomous

Accelerators international collaboration aims to RL elegant (if not ideal) solution, but online training often not possible!
consolidate the existing knowledge in the
/ : community, exchange experience and ideas, and ..
o § & { x : work together towards accelerator-specific O N ot sam p | e—eﬁ:l clent enou g h
5-7 February 2024 solutions using the latest advances in RL

NNO Salzburg, Austria W youtube, com ® Safety constraints

JOI

— RL (like MPC) needs to be built into accelerator design.

AT for particle accelerators, EuCAIF, V. Kain, 01-May-2024

AT for particle accelerators, EuCAIF, V. Kain, 01-May-2024



Surrogates and differentiable programming
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https://mode-collaboration.github.io/'; Dorigo et al 2310.01857

Differentiable versions
of all steps in the particle
physics processing chain

Either as ML-based
surrogate models

Or via e.qg. differentiable
programming

What can we do with this?

Heinrich, Kagan 2308.16680

S/(S+B) weighted events / GeV

The CERN accelerator comple

eX
Complexe des accélérateurs du CERN

h o+ v
a H
e ;
o H
v B
Ps —=
e N\ AWAKE
as > m
4 MeDicIs
/ ISOLDE
o ]
\ REX(HIF East Area
» A<
P mmmm D e
\ ——
— A CLEAR
| _LEm [

19.7 b (8 TeV) + 5.1 o' (7 TeV)

x10°z
35 CMS S/(S+B) weighted sum
E H—yy .
33 .
E — S48 fits (weighted sum)
25 ===+ B component

Di-Photon invariant mass

Slides from Gregor Kasieczka's talk




Inductive Bias

Compositionality

Relationships

Symmetry
Causality

)
—
©
O © D scale
(2] —
gv]
O
n




Geometric Deep Learning

A hot topic in Al/ML research

e How do we incorporate domain

<nowledge?

e Should we? “The bitter lesson”

The three “flavours” of GNN layers

Xb < Ch XC ......... Xb ( o — XC Xb «—my . | XC
/ \ \v / \V .......
de Cbe -------- )abd( """"" 052 )mbd( ....... : mb
/ -_'\ :.'... A
Xd Xe Xd Xe Xd "X
Convolutional Attentional Message-passing

h;, =¢ (Xi, & %j¢(xj)) h; = ¢ (Xi, . a(Xi,Xj)¢(Xj)> h; = ¢ (Xz’7 P ¢(Xi,xj))

FEN; FEN; JEN;

o

arX1v:2104.13478v2 [cs.LG]| 2 May 2021

Grids Groups Graphs Geodesics & Gauges

Geometric Deep Learning
Grids, Groups, Graphs,
Geodesics, and Gauges

Michael M. Bronstein', Joan Bruna?, Taco Cohen?, Petar Veli¢kovié?

May 4, 2021

Imperial College London / USI IDSIA / Twitter
>New York University
3Qualcomm Al Research. Qualcomm Al Research is an initiative of Qualcomm

Technologies, Inc.
‘DeepMind




Geometric Deep Lea

Particle physics & astrophysics
highlighted in review

rning

dare

e Continues to be an effective

connection with Al community

6. PROBLEMS AND APPLICATIONS ‘ 113

of particular interest, since neutrinos interact only very rarely with matter,
and thus travel enormous distances practically unaffected. Detecting neutri-
nos allows to observe objects inaccessible to optical telescopes, but requires
enormously-sized detectors — the IceCube neutrino observatory uses a cubic
kilometer of Antarctic ice shelf on the South Pole as its detector. Detecting
high-energy neutrinos can possibly shed lights on some of the most mysteri-
ous objects in the Universe, such as blazars and black holes. Choma et al.
(2018) used a Geometric neural network to model the irregular geometry of
the IceCube neutrino detector, showing significantly better performance in
detecting neutrinos coming from astrophysical sources and separating them
from background events.

While neutrino astronomy offers a big promise in the study of the Cosmos,
traditional optical and radio telescopes are still the ‘battle horses” of as-
tronomers. With these traditional instruments, Geometric Deep Learning
can still offer new methodologies for data analysis. For example, Scaife
and Porter (2021) used rotationally-equivariant CNNs for the classification
of radio galaxies, and McEwen et al. (2021) used spherical CNNs for the
analysis of cosmic microwave background radiation, a relic from the Big
Bang that might shed light on the formation of the primordial Universe. As
we already mentioned, such signals are naturally represented on the sphere
and equivariant neural networks are an appropriate tool to study them.

The characteristic pattern of
light deposition in IceCube
detector from background
events (muon bundles, left)
and astrophysical neutrinos
(high-energy single muon,
right). Choma et al. (2018)

112 | BRONSTEIN, BRUNA, COHEN & VELICKOVIC

Part of the Large Hadron
Collider detectors.

Example of a particle jet.

Particle physics and astrophysics High energy physicists were perhaps
among the first domain experts in the field of natural sciences to embrace
the new shiny tool, graph neural networks. In a recent review paper, Shlomi

' et al. (2020) note that machine learning has historically been heavily used in
A particle physics experiments, either to learn complicated inverse functions
# allowing to infer the underlying physics process from the information mea-
sured in the detector, or to perform classification and regression tasks. For
t the latter, it was often necessary to force the data into an unnatural repre-
' sentation such as grid, in order to be able to used standard deep learning

architectures such as CNN. Yet, many problems in physics involve data in

. the form of unordered sets with rich relations and interactions, which can

be naturally represented as graphs.

One important application in high-energy physics is the reconstruction and
classification of particle jets — sprays of stable particles arising from multiple
successive interaction and decays of particles originating from a single initial
event. In the Large Hardon Collider, the largest and best-known particle
accelerator built at CERN, such jet are the result of collisions of protons at
nearly the speed of light. These collisions produce massive particles, such as
the long though-for Higgs boson or the top quark. The identification and
classification of collision events is of crucial importance, as it might provide
experimental evidence to the existence of new particles.

Multiple Geometric Deep Learning approaches have recently been proposed
for particle jet classification task, e.g. by Komiske et al. (2019) and Qu and
Gouskos (2019), based on DeepSet and Dynamic Graph CNN architectures,
respectively. More recently, there has also been interest in developing spe-
cialsed architectures derived from physics consideration and incorporating
inductive biases consistent with Hamiltonian or Lagrangian mechanics (see
e.g. Sanchez-Gonzalez et al. (2019); Cranmer et al. (2020)), equivariant to
the Lorentz group (a fundamental symmetry of space and time in physics)
(Bogatskiy et al., 2020), or even incorporating symbolic reasoning (Cran-
mer et al.,, 2019) and capable of learning physical laws from data. Such
approaches are more interpretable (and thus considered more ‘trustworthy’
by domain experts) and also offer better generalisation.

Besides particle accelerators, particle detectors are now being used by as-
trophysicist for multi-messenger astronomy — a new way of coordinated obser-
vation of disparate signals, such as electromagnetic radiation, gravitational
waves, and neutrinos, coming from the same source. Neutrino astronomy is




Scientific Understanding



Matt Schwartz's talk

Theoretical High Energy Physics may have stalled Beyond augmented intelligence

In the past, we made progress Are we even making forward progress
: & Prog Suppose a machine understands the theory of everything but we don’t
depsite many dead ends anymore? _
e e.g.can calculate the fine-structure constant from scratch

gé»%&ﬁi

Maybe the problems are just too difficult (for us)

* e.g.can preduct the endpoint of black-hole evaporation
CEEBTTER VA * The authors of Popular science books
H; C@l‘ /W understand the details; we just get the general idea

| don’t understand the proof of Fermat’s last theorem
* I'm glad that somebody does

{A BRIEF N  Does it matter that the person is human?

HISTORY [l oo
oF TIMERRZ =

Could a cat ever learn to play chess? If a machine understands fundamental physics it can

1. Dumb it down so we can get the general idea
2. Find practical applications

* Humans have limits too

Because of Al, | am now optimistic
for substantive progress in high-
energy theory in my lifetime

Is this what we want? No.

But maybe it’s the best we will get.
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| enable or enhance scientific understanding?

On scientific understanding with artificial intelligence

Mario

Cervera-Lierta,? ° Pascal Friederich,? > ° Gabriel dos Passos Gomes,* 2 Florian Hase,

Krenn,' %34 * Robert Pollice,? 2 Si Yue Guo,? Matteo Aldeghi,? > % Alba
2,3,4,6

Adrian Jinich,” AkshatKumar Nigam,? 3 Zhenpeng Yao,% %919 and Aldn Aspuru-Guzik? 34 11,1

Imagine an oracle that correctly predicts the outcome of every particle physics experiment, the

products of every chemical reaction, or the function of every protein. Such an oracle would revolu-

tionize science

and technology as we know them. However, as scientists, we would not be satisfied

with the oracle itself. We want more. We want to comprehend how the oracle conceived these

predictions. T

nis feat, denoted as scientific understanding, has frequently been recognized as the

essential aim o:

- science. Now, the ever-growing power of computers and artificial intelligence poses

one ultimate question: How can advanced artificial systems contribute to scientific understanding
or achieve it autonomously?
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The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,

Develop or reading. Think of
General Theories Interesting
G | theori tb -
consistent with most or all Questions
available data and with other Why does that

current theories. pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...
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How does Al help?

An android can act

e |) as a computational microscope,
providing information not (yet)

attainable by experiment

e ||) as a resource of inspiration or an
artificial muse, expanding the scope of

human imagination and creativity.

In those two ¢
essential to ta

asses, the human scientist is

<e the new insight and

inspiration and develop it to full
understanding. Finally, an android can be

e ||l) an agent of understanding,
replacing the human in generalizing
observations and transterring scientific

concepts to new phenomena.

Computational Resource of Agent of
Microscope Inspiration Understanding

&

mnm

Mario Krenn, et. Al. https://arxiv.org/abs/2204.01467
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Use of ML in
Physics vs. Molecules & Materials



Drug & Materials Discovery

Many uses of Al aimed at accelerating drug discovery and materials discovery

e Experimental follow up needed to contirm the predicted properties

e OK if the predictions are wrong as long as it accelerates the discovery process

Image credits: RFDiffusion from Baker Lab, Institute for Protein Design, U Washington;

Molecular Dynamics

Molecular Modeling Lipinski’s rule-of-5

Protein Structure Prediction . o
Chemical similarity search

X-ray Crystallography

Pharmacophore search
Assay Development
Target Identification

& Characterization Molecular Docking

Biochemical Pathway Analysis
Low/High-Throughput Screening

Virtual Combinatorial Chemistry

Hit Identification De novo Design

Scaffold Hopping

QSAR Modeling
Lead Generation

and Optimization Experimental ADMET analysis
In silico ADMET analysis
Physiologically Based Pharmacokinetic Modeling

Clinical Trials

Quantum Mechanics

Pre-Clinical Studies

FDA Approval

Chanin Nantasenamat from Towards reproducible computational drug discovery. J Cheminform 12, 9 (2020). https://doi.org/10.1186/s13321-020-0408-x

Pushmeet Kohli
@pushmeet

We at @GoogleDeepMind are excited to announce #GNoME - an Al tool
that has discovered 2.2 million new materials, and helps to predict
material stability.

We're releasing 381K stable materials to help scientists pursue materials
discovery breakthroughs.

https://dpmd.ai/PK-materials



Drug & Materials Discovery

Many uses of Al aimed at accelerating drug discovery and materials discovery

e Experimental follow up needed to contirm the predicted properties

e OK if the predictions are wrong as long as it accelerates the discovery process

Image credits: RFDiffusion from Baker Lab, Institute for Protein Design, U Washington;

Molecular Dynamics

Molecular Modeling Lipinski’s rule-of-5

Protein Structure Prediction . o
Chemical similarity search

X-ray Crystallography

Pharmacophore search
Assay Development
Target Identification

& Characterization Molecular Docking

Biochemical Pathway Analysis
Low/High-Throughput Screening

Virtual Combinatorial Chemistry

Hit Identification De novo Design

Scaffold Hopping

QSAR Modeling
Lead Generation

and Optimization Experimental ADMET analysis
In silico ADMET analysis
Physiologically Based Pharmacokinetic Modeling

Clinical Trials

Quantum Mechanics

Pre-Clinical Studies

FDA Approval

Chanin Nantasenamat from Towards reproducible computational drug discovery. J Cheminform 12, 9 (2020). https://doi.org/10.1186/s13321-020-0408-x

Pushmeet Kohli
@pushmeet

We at @GoogleDeepMind are excited to announce #GNoME - an Al tool
that has discovered 2.2 million new materials, and helps to predict
material stability.

We're releasing 381K stable materials to help scientists pursue materials
discovery breakthroughs.

https://dpmd.ai/PK-materials



Experimental Physics, Astrophysics, Cosmology
In contrast, Al/ML in experimental physics, astrophysics, and cosmology is often a
component of a hypothesis testing / statistical inference pipeline.
e Robustness to distribution shift is important!

e Mistakes matter — we need to be able to calibrate & pertorm uncertainty

guantification!
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Computer-Assisted Scientific Understanding

Computational Resource of Agent of
Microscope Inspiration Understanding

Mario Krenn, et. Al. https://arxiv.org/abs/2204.01467


https://arxiv.org/abs/2204.01467

Computer-Assisted Scientific Understanding

Data Analysis
& Inference

Resource of
Inspiration

Computational
Microscope

Agent of
Understanding

Mario Krenn, et. Al. https://arxiv.org/abs/2204.01467


https://arxiv.org/abs/2204.01467

Simulation-based Inference



Science is replete with high-fidelity simulators

Particle Neuron Foidem; Gravitational Evolution of
colliders activity HPIGCIIIES lensing the Universe

| | | | | | | | | | | | | | | |
10-*® 107 107** 107° 107% 107 10" 103 109 10? 102 10*°  10'®  10%Y 10%*  10°%7
Length scale [m]

Simulators are causal, generative models of the data generating process

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

Science is replete with high-fidelity simulators

e

Particle Neuron Foidem; Gravitational Evolution of
colliders activity HPIGCIIIES lensing the Universe

| | | | | | | | | | | | | | | |
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The expressiveness of programming languages facilitates the development of

complex, high-fidelity simulations, and the power of modern computing provides the

ability to generate synthetic data from them. |
[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

Science is replete with high-fidelity simulators

e

Particle Neuron Foidem; Gravitational Evolution of
colliders activity HPIGCIIIES lensing the Universe

| | | | | | | | | | | |
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Untortunately, these simulators are poorly suited for inference.

Often involve many latent variables, non-differentiable components, or they are just too slow.

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

Simulating particle physics processes
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Simulating particle physics processes

Parton-level Theory
momenta parameters
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Simulating particle physics processes
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Simulating particle physics processes

| atent variables

Detector Shower Parton-level Theory
Interactions splittings momenta parameters

e E| 2 trON

e Charged Hadron {e.g. Pion)

— — — - Neutral Hadron {e.g. Neutron)
= = = Photon

[ =
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| S S —
I

Evolution
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Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — y — 25 — Z; —— )

A ———————————————————————
Evolution



Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — 2y — 2 — Z;, —

Sample from plzlz4) p(2al2s) p(2s2) p(2p16)

MADGRAPHS _aMCO@ENLDO

X X
X X X X

IIIIIIIIIIIIIIII

Prediction (simulation)



Simulating particle physics processes

Detector Shower Parton-level Theory
Observables . . e
Interactions splittings momenta parameters
T Rg —— 2y — Z;, —— ()
pal6) = [z [z, [az, plalz p(zal2,) Pzl p(z16)

—
Inference



Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

2 —— 2y — 2 — )

p(x|f) = /dzd/sz/dzp p(x|zq) p(z4|zs) p(2s|2p) p(2p|0)

It's infeasible to calculate the
integral over this enormous space!

Inference



Simulation-Based Inference

Deep learning and neural density estimation are effective at learning approximate
surrogates for the likelihood and posterior, revolutionizing principled statistical
inference in science!

e Removes the need tfor hand-engineered summary statistics that sacrifice power

O f;
ML pipeline
component

arg min L|g] — 7(x|0) —>
g

nature / 0

parameter 1

latent 2

Data / Simulation Machine Learning Inference



Impact on Studies of The Higgs Boson

Potential for massive gains in precision of a flagship measurement at the LHC |

Equivalent increasing data collected by LHC by several factors

parameter (9

|

observable

= .

pp — WH — (v bb

~
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L =300fb!
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[J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn 1908.06980]
[J. Brehmer, F. Kling, I. Espejo, K. Cranmer 1907.10621]
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Gravitational Wave Astronomy

Gravitational wave Black hole Spacetime

Real-time gravitational-wave science with neural posterior estimation

Mirror Maximilian Dax,'** Stephen R. Green,? T Jonathan Gair,??
Jakob H. Macke,!'3 Alessandra Buonanno,>* and Bernhard Scholkopf!

' Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tibingen, Germany
*Maz Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Miihlenberg 1, 14476 Potsdam, Germany

3 Machine Learning in Science, University of Tibingen, 72076 Tibingen, Germany
* Department of Physics, University of Maryland, College Park, MD 20742, USA
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Bl at EUCAIFCon 2024

Simulation-based Inference was well represented at EUCAIFCon!

Simulation of Z2 model using Variational Autoregressive Network (VAN).

UVA 1, Hotel CASA

Artificial Intelligence techniques in KM3NeT
UVA 1, Hotel CASA

ML-based Unfolding Techniques for High Energy Physics
UVA 1, Hotel CASA

Vaibhav Chahar @
13:30-13:33

Evangelia Drakopoulou @

13:33-13:36

Nathan Huetsch @
13:36 - 13:39

Building sparse kernel methods via dictionary learning. Expressive, regularized and interpretable models for statistical @

Gaia Grosso

pop-cosmos: comprehensive forward modelling of photometric galaxy survey data

UVA 1, Hotel CASA

Calibrating Bayesian Tension Statistics with Neural Ratio Estimators

UVA 1, Hotel CASA

Machine learning for radiometer calibration in global 21cm cosmology

UVA 1, Hotel CASA
PolySwyft: a sequential simulation-based nested sampler
UVA 1, Hotel CASA

Extracting Dark Matter Halo Parameters with Overheated Exoplanets

UVA 1, Hotel CASA

Stephen Thorp @
13:42 - 14:02

Harry Bevins @
14:02 - 14:22

Mr Samuel Alan Kossoff Leeney @

14:22 - 14:25
Kilian Scheutwinkel @
14:28 - 14:31

Maria Benito @
14:31 - 14:34

Characterizing the Fermi-LAT high-latitude sky with simulation-based inference

Sorbonne, Hotel CASA

Simulation-Based Supernova la Cosmology

Christopher Eckner @
14:50 - 14:53

Konstantin Karchev @

Sorbonne, Hotel CASA 14:53 - 14:56
Optimizing bayesian inference in cosmology with Marginal Neural Ratio Estimation Guillermo Franco Abellan @
Sorbonne, Hotel CASA 14:56 - 14:59

Stochastic Gravitational Wave Background Analysis with SBI

Sorbonne, Hotel CASA

COSMOPOWER: fully-differentiable Bayesian cosmology with neural emulators
Sorbonne, Hotel CASA

James Alvey @
14:59 - 15:02

Alessio Spurio Mancini @

15:02 - 15:22

Networks Learning the Universe: From 3D (cosmological inference) to 1D (classification of spectra) Caroline Heneka @

Sorbonne, Hotel CASA

Anomaly aware machine learning for dark matter direct detection at DARWIN

Sorbonne, Hotel CASA

Clustering Considerations for Nested Sampling

Sorbonne, Hotel CASA

Enhancing Robustness: BSM Parameter Inference with n1D-CNN and Novel Data Augmentation

Sorbonne, Hotel CASA

Fully Bayesian Forecasts with Neural Bayes Ratio Estimation

Sorbonne, Hotel CASA

Summary talks: Astroparticle Physics and Al (Siddarth Mishra-Sharma) Tilman Plehn

UVA 2-3-4, Hotel CASA

09:00 - 09:40

Summary talks: Cosmology and Al (Benjamin Wandelt)

UVA 2-3-4, Hotel CASA

15:22 - 15:42

Andre Scaffidi &
15:42 - 15:45

Adam Ormondroyd @
15:45 - 15:48

Yong Sheng Koay @
15:48 - 15:51

Thomas Gessey-Jones @

15:51 - 15:54

Analyzing ML-enabled Full Population Model for Galaxy SEDs with Unsupervised Learning and Mutual Information @
Dr Sinan Deger

Convolutional neural network search for long-duration transient gravitational waves from glitching pulsars @
Rodrigo Tenorio

Tuning neural posterior estimation for gravitational wave inference Alex Kolmus &

Oxford, Hotel CASA 16:06 - 16:09

Normalising flows for dense matter equation of state inference from gravitational wave observations of neutron star me @
Jessica Irwin

A Strong Gravitational Lens Is Worth a Thousand Dark Matter Halos: Inference on Small-Scale Structure Using Sequent @
Sebastian Wagner-Carena

Optimal, fast, and robust inference of reionization-era cosmology with the 21cmPIE-INN Benedikt Schosser &
Oxford, Hotel CASA 16:49 - 16:52
Simulation Based Inference from the CD-EoR 21-cm signal Anchal Saxena @
Oxford, Hotel CASA 16:52 - 16:55

Flexible conditional normalizing flow distributions over manifolds: the jammy-flows toolkit  Dr Thorsten Gliisenkamp @

Oxford, Hotel CASA 16:55 - 16:58
A deep learning method for the trajectory reconstruction of gamma rays with the DAMPE space mission @
Parzival Nussbaum

David Rousseau

15:00 - 15:40



Biophysical Journal

Experiment

Observation q.°"* Posterior of
ABSTRACT VOLUME 122, ISSUE 3, SUPPLEMENT 1, 140A, FEBRUARY 10, 2023 the observation
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Simulation-based inference of single-molecule force =
spectroscopy | J]
time D,/D,
Roberto Covino e Pilar Cossio e Lars Dingeldein /\
Model q, = M (8) Simulation q” AG?
Roberto Covino @CovinolLab - Sep 22, 2022 0 = (Dy/Dx AGH, K, N

Because to measure the molecule's motion we have to couple it to a device
that is much larger and slower than the molecules itself. The device reports

Ki

T . . . <2
only indirectly on the molecule. Disentangling the device from the
molecule is hard.
Density estimation
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Simulation-based Inference

Papers

The list is automatically compiled each day. Should you observe any inaccuracies or concerns, kindly bring them to our attention.
Additionally, if you believe a new paper aligns with the topic, feel free to submit it.
Visualize the annual growth in the number of publications.

oA Sort by Category

Total (744)
Statistics (195)

Computer Science (102)

Astrophysics (71)
Mathematics (54)
Education (47)
Economics (46)
Physics (33)

Quantitative Biology (31)

Neuroscience (27)

Quantitative Finance (21)

Astronomy (14)
Genetics (13)
Epidemiology (11)
Engineering (10)
Medicine (8)
Geography (8)
Social Science (7)

Evolutionary biology (6)

Ecology (5)

Cognitive Science (4)
Robotics (4)

Systems biology (4)
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Statistics
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e Simulation based stacking, Y Yao, BRS Blancard, J Domke - arXiv preprint arXiv:2310.17009, 2023 - arxiv.org

e Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability, M Falkiewicz, N Takeishi, |
Shekhzadeh... - arXiv preprint arXiv .., 2023 - arxiv.org

e Simulation-based Inference with the Generalized Kullback-Leibler Divergence, BK Miller, M Federici, C Weniger, P
Forré - arXiv preprint arXiv .., 2023 - arxiv.org

e Simulation-based Inference for Cardiovascular Models, A Wehenkel, J Behrmann, AC Miller, G Sapiro... - arXiv preprint
arXiv ..., 2023 - arxiv.org

e Hierarchical Neural Simulation-Based Inference Over Event Ensembles, L Heinrich, S Mishra-Sharma, C Pollard... -
arXiv preprint arXiv ..., 2023 - arxiv.org

e | -C2ST Local Diagnostics for Posterior Approximations in Simulation-Based Inference, J Linhart, A Gramfort, PLC
Rodrigues - arXiv preprint arXiv:2306.03580, 2023 - arxiv.org

e | earning Robust Statistics for Simulation-based Inference under Model Misspecification, D Huang, A Bharti, A Souza,
L Acerbi... - arXiv preprint arXiv .., 2023 - arxiv.org

e Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation, R Gao, M Deistler, JH Macke -
arXiv preprint arXiv:2305.15208, 2023 - arxiv.org

e Variational Inference with Coverage Guarantees, Y Patel, D McNamara, J Loper, J Regier... - arXiv preprint arXiv ..., 2023
- arxiv.org

* Generalised likelihood profiles for models with intractable likelihoods, DJ Warne, OJ Maclaren, EJ Carr, MJ Simpson...
- arXiv preprint arXiv .., 2023 - arxiv.org

e Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods, J
Walchessen, A Lenzi, M Kuusela - arXiv preprint arXiv:2305.04634, 2023 - arxiv.org

e Ralancina Simiilation-bhaced Inference for Concervative Pocteriore A Delaiinov RK Miller P Forré C \Weniaer - arXiv

See also: github.com/smsharma/awesome-neural-sbi
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https://github.com/smsharma/awesome-neural-sbi

Computational Microscope



The strong force: Quantum Chromodynamics (QCD)

The strong nuclear torce is one of the tour

fundamental forces.

't is described by Quantum Chromodynamics
(QCD)

QCD describes how quarks and gluons interact

Emergent phenomena:
Quarks and gluons form protons, neutrons, etc.

+J



Lattice Field Theory

Lattice field theory is a computational approach to studying interacting tield theory
on a discretized space-time lattice.

Fach link on the lattice has data corresponding to the symmetry group of the
theory. For the strong torce (QCD) each link has a 3x3 unitary matrix.

This animation is a single configuration of the lattice.

Think of a 4-d image playing like a movie.

QCD Lagrangian 643x128 x4 x9x 2
l n (1L A - S 9
L = _.I 2l I‘l“‘ + | L 10 numbers

qliv" (9, — igA,) —m,)q
J u.dschit

o——0
A A
4 = 1

O quark A gluon
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Image vs. Lattice Quantum Fields

Image generation

= 1,000,000,000 samples

Image geometry 512 x 512

RGB pixel variables | x3

= 1,000,000 dof

Target
Subjective high quality per sample

Symmetries
Few approximate symmetries
(for example, reflection, small translations)



Image vs. Lattice Quantum Fields

Image generation

Image geometry

RGB pixel variables

Target

nature reviews physics

[® Check for update

Advancesin machine-learning-based
sampling motivated by lattice
quatum chromodynamics

= 1,000,000,000 samples

512 x 512

x3

= 1,000,000 dof

Subjective high quality per sample

Symmetries

Few approximate symmetries

(for example, reflection, small translations)

Quantum field generation

= 10,000 samples

Lattice geometry 256 x 256 x 256 x 512

SU(3) link variables | x4x 8

=100,000,000,000 dof

Target
Obijective distribution p(U) = e3Y/Z

Symmetries
High-dimensional exact symmetries
(for example, translations, gauge symmetry)



Distribution over configurations

We don't want just a single "image" (lattice configuration), we want to sample the high-dimensional
distribution of configurations predicted by the theory.

* Path integral: each "path” is a sample from distribution of lattice configurations path ~exp(-Action[path])
e Predictions are expectations of quantum operators w.r.t. this distribution.

 Hamiltonian Monte Carlo was invented for this problem, but it has limitations.
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The Path Integral Formulation of Your Life



Distribution over configurations

We don't want just a single "image" (lattice configuration), we want to sample the high-dimensional
distribution of configurations predicted by the theory.

* Path integral: each "path” is a sample from distribution of lattice configurations path ~exp(-Action[path])
e Predictions are expectations of quantum operators w.r.t. this distribution.

 Hamiltonian Monte Carlo was invented for this problem, but it has limitations.
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Predictions are taken seriously

Magnetic moment of the electron:
(torque an electron feels in a magnetic

field) ae = (g — 2)/2

Most accurately verified prediction in

the history of physics i WA A W AOW A,
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Albergo, Kanwar, Shanahan, PRD (2019) arXiv:1904.12072

Flows for LQCD

Flow-based generative models for Markov chain Monte Carlo in lattice field theory

BaSiC idea: M. S. Albergo,»?:3 G. Kanwar,* and P. E. Shanahan* !

I Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
“Cavendish Laboratories, University of Cambridge, Cambridge CB3 OHE, U.K.
Y University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

® use n O rma I 1Z1 n g ﬂOWS tO 4 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

o A Markov chain update scheme using a machine-learned flow-based generative model is proposed

a p p FOXIM ate t h e ta rg et B O ‘tZ Mann for Monte Carlo sampling in lattice field theories. The generative model may be optimized (trained)
to produce samples from a distribution approximating the desired Boltzmann distribution deter-

d I S.t rl b U .tl on mined by the lattice action of the theory being studied. Training the model systematically improves
. autocorrelation times in the Markov chain, even in regions of parameter space where standard

Markov chain Monte Carlo algorithms exhibit critical slowing down in producing decorrelated up-

dates. Moreover, the model may be trained without existing samples from the desired distribution.

: : The algorithm is compared with HMC and local Metropolis sampling for ¢* theory in two dimen-
e Train using reverse KL[qg||p] The alg P polis sampling for ¢ theory

(not samples from the target)

e Sample from the flow instead of

Enrico Rinaldi @enricesena - Nov 1 v
Yesterday Gurtej Kanwar told us about machine learning for lattice field
theories and exciting progress in Generative Models for gauge theories
(collaboration with @DeepMindAl ) at #DLAP2019 Today is the last day of
this great conference!

traditional Hamiltonian MC

Learned model won't be pertect, but

you can correct via importance
sampling or MCMC procedure

Hire Michael 1




1 Sample Gaussian distribution

/DZ(K

Flows for molecular dynamics

RESEARCH Noé et al., Science 365, 1001 (2019) 6 September 2019 * * * *
f; f
RESEARCH ARTICLE SUMMARY A b n
MACHINE LEARNING + : + * - *
Boltzmann generators: Sampling A

equilibrium states of many-body -
SYStemS With deep learning 2 Generate distribution

Px(X)
Frank Noé*t, Simon Olsson*, Jonas Kohler*, Hao Wu S a m e CO r e id e a a S /\/\A\/\/\/VL

Boltzmann generators 3 Re -weight @

The main approach 1s thus to start with one e
configuration, e.g., the folded protein state, and _M 0 A
make tiny changes to it over time, e.g., by using l st aion l
Markov-chain Monte Carlo or molecular dy-

namics (MD). However, these simulations get

trapped in metastable (long-lived) states: For

example, sampling a single folding or unfold-

ing event with atomistic MD may take a year Boltzmann generators overcome sampling

on a supercomputer. problems between long-lived states.




Space-time & Local Gauge Symmetry
The action is invariant to local gauge transformations, so the distribution is
constant in those directions. It's a huge product group! SU(3)#lattice sites)
Many more pure gauge degrees of freedom than physical ones

We would like to entorce this symmetry in the network, and not have to learn it.




. Xiv:2002.02428, ICML2020
Step 1: Flows on Spheres and Tori o |

We designed flows on compact manitolds like Spheres and Tori that correspond
to Lie groups:

T r' = g(r) 0" =f(0;r') oo
eﬂﬁlﬂ% oo

SL AN

¢ ( adS)

Figure 3. Learned densities on T using NCP, Mobius and CS
flows. Densities shown on the torus are from NCP.

Figure 5. Learned multi-modal density on SU(2) = S* using the
recursive flow. Each column shows an S” slice of the S° density



for Lattice Field Theory

Advances in machine-learning-based
sampling motivated by lattice
quatum chromodynamics

Review =

ranmer ®", Gurtej Kanwar ®?, Sébastien Racaniére ®3, Danilo J. Rezende ® % & Phiala E. Shanahan ®*®
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The strong force: Quantum Chromodynamics (QCD)

Interaction strength depends on energy

QC D iS St ron g at at ‘ OW- [Gross, Politzer, Wilczek, Nobel 2004]

v T decays (N3LO)

a DIS jets NLO)

0 Heavy Quarkonia (NLO)

o ¢'¢ jets & shapes (res. NNLO)
® c.w. precision fits (NNLO)

v pp—> jets (NLO)

v pp —= tt (NNLO)

September 2015

. 2
energies, no small %(Q)

coupling, perturbation

theory fails.

Emergent phenomena:

protons, pions, etc. yd — QCD 0 (M,) =0.1177 = 0.0013

10 100 1000
Q [GeV]




The strong force: Quantum Chromodynamics (QCD)

Interaction strength depends on energy

QC D iS St ron g at at ‘ OW- [Gross, Politzer, Wilczek, Nobel 2004]

v T decays (N3LO)

a DIS jets NLO)

0 Heavy Quarkonia (NLO)

o ¢'e jets & shapes (res. NNLO)
® c.w. precision fits (NNLO)

v pp —> jets (NLO)

v pp —= tt (NNLO)

September 2015

. 2
energies, no small Q%)

coupling, perturbation 03 fyg

theory fails.

QCD is weak at at high-
Emergent phenomena: | s A | H ‘9
- energies, small coupling
0.1 : - / /
protons, pions, etc. # D oM = 01177 £ 00018 T |
QD (M) =0 . perturbation theory works
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Feynman diagrams with loops

More precise calculations have more loops

e Butthe number of diagrams grows combinatorially with the number of loops
* Feynman diagrams become a poor way to organize the calculation

New bootstrap approach emerged that leverages analytical properties of
amplitudes. Properties are so constraining, they define a unique solution

NN ORC N AONAY,
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ﬁ o 70 A 2
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Bootstrap

In this bootstrap approach the L-loop amplitude can be expressed as a sum of
terms with an integer coefficient and a word composed of 2L letters

e The 6 letters{a.b,c.d,e, f} encode the kinematics of the collision



Bootstrap

In this bootstrap approach the L-loop amplitude can be expressed as a sum of
terms with an integer coefficient and a word composed of 2L letters

e The 6 letters{a.b,c.d,e, f} encode the kinematics of the collision

For example, in a particular theory called #'=4 Super Yang-Mills theory, the
answer at 2-loops for a particular interaction is:

SIF{®] = +8bddd +8ceee +8afff +8bfff +8cddd +S8aeee
+16bbbd+16ccce+16bbb f +16aaa f+16cced+16aaae

e Of the 64 =1296 possible terms, most are 0. Sparse, lots of structure! Y



Bootstrap

In this bootstrap approach the L-loop amplitude can be expressed as a sum of
terms with an integer coefficient and a word composed of 2L letters

e The 6 letters{a.b,c.d,e, f} encode the kinematics of the collision

For example, in a particular theory called #'=4 Super Yang-Mills theory, the
answer at 2-loops for a particular interaction is:

SIF{®] = +8bddd +8ceee +8afff +8bfff +8cddd +S8aeee
+16bbbd+16ccce+16bbb f +16aaa f+16cced+16aaae

e Of the 64 =1296 possible terms, most are 0. Sparse, lots of structure! Y

The solution space is growing exponentially! Hard to find the answer

loop order L 1 2 3 4 5! 6 7 8
terms in S[F\”)] 6 12 636 11,208 263,880 4.9 x 10° 9.3 x 107 1.67 x 10°




Can Al help?

Garrett Merz Tianji Cai Lance Dixon Matthias Wilhelm Niklas Nolte  Francois Charton

Similar to an NP-complete problem:
e the answer is hard to find, but easy to check.

We don't need the model to be provably correct, we just need it to be good at
guessing because we can get a certificate of correctness

 The problem is inherently discrete, so transtormers are a natural choice

TRANSFORMERS FOR SCATTERING AMPLITUDES m

Garrett W. Merz 7, Tianji Cai *, Francois Charton 3 Meta &
Niklas Nolte %, Matthias Wilhelm *, Kyle Cranmer T, Lance Dixon *

UNIVERSITY OF
COPENHAGEN i

’I ‘ h NATIONAL
e iy Uyviriaivi WISCONSIN f{

UNIVERSITY OF WISCONSIN-MADISON

Can Transformers learn N=4 Super Yang Mills Theory?

Paper & poster in ML and Physical Sciences workshop yesterday



Symbolic Regression

Complete the sequence:

e 1,1,2,3,5,8,13, 21, ...

No i.i.d. data, only one example.
What is the recursion rule?

® Xy = X1 T X2

Our problem is much harder:

e cach element of the sequence
s a "tensor” growing Iin
dimension

2 4 6 8 2
75 — 76 - 76 - 76 5 76"

-

Francois Charton =
@f charton

Transformers can discover recurrence relations from sequences (aka IQ
tests). New paper on symbolic regression, with @stephanedascoli
@pa_kamienny and @GuillaumelLample

£ Guillaume Lample @ #NeurlPS2023 @GuillaumeLample - Jan 14, 2022

Deep Symbolic Regression for Recurrent Sequences --
arxiv.org/abs/2201.04600 We show that transformers are great at predicting
symbolic functions from values, and can predict the recurrence relation of
sequences better than Mathematica. You can try it here:bit.ly/3niE5FS
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Building Community



The ML4Jets Workshops
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A journal to consider

Machine Learning: Science and Technology is a multidisc
the application ot machine learning across the sciences wit

plinary open access journal that bridges
n advances in machine learning methods

and theory as motivated by physical insights. Disclosure: I'm the current Editor-in-Chief

ﬂ Petar Veli¢kovié @PetarV/ 93 - 14h
My first Quantum Geometric Deep Learning paper EJE deploying time-

warping invariance __ to QRNNs. Now published in @MILSTjournal

Fantastic work by Ivana bringing this over the finish line %'

@ Machine Learning: Science and Technology @MVLSTjournal - 14h

Great new work by Ivana Nikoloska, Osvaldo Simeone, Leonardo
Banchi and @PetarV 93 @TUeindhoven @GoogleDeepMind
@fisica UNIFI - 'Time-warping invariant #quantum recurrent
#neuralnetworks via quantum-classical....' -
opscience.iop.org/article/10.108.. #machinelearning #Al ...
Show more

10P Publishing
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Mach. Learn.: Sci. Technol. 4 (2023) 045038 https://doi.org/10.1088/2632-2153/acff39
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Time-warping invariant quantum recurrent neural networks via
quantum-classical adaptive gating

Ivana Nikoloska"* (", Osvaldo Simeone’, Leonardo Banchi’*® and Petar Velickovié™®

! Eindhoven University of Technology, Eindhoven 5612 AP, The Netherlands

2 King’s College London, Strand, London WC2R 2LS, United Kingdom

2 Department of Physics and Astronomy, University of Florence, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
* INEN, Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy

% DeepMind, London, United Kingdom
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* Author to whom any correspondence should be addressed.

E-mail: i.nikoloska@tue.nl

Keywords: quantum machine learning, recurrent models, time-warping

Abstract

Adaptive gating plays a key role in temporal data processing via classical recurrent neural networks
(RNNs), as it facilitates retention of past information necessary to predict the future, providing a
mechanism that preserves invariance to time warping transformations. This paper builds on
quantum RNNs (QRNNs), a dynamic model with quantum memory, to introduce a novel

class of temporal data processing quantum models that preserve invariance to time-warping
transformations of the (classical) input-output sequences. The model, referred to as tine
warping-invariant QRNN (TWI-QRNN), augments a QRNN with a quantum-—classical adaptive

Follow: @MLSTjournal
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molecular string representation
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Benchmarks

Challenges

1990 the HiggsML challenge

May to September 2014

challenge

When High Energy Physics meets Machine Learning

Home Documentation Prizes and Award Software FAQ Around Organisation and thanks Contact

Fast Calorimeter Simulation Challenge 2022

View on GitHub

Welcome to the home of the first-ever Fast Calorimeter Simulation Challenge!

The purpose of this challenge is to spur the development and benchmarking of fast and high-fidelity
calorimeter shower generation using deep learning methods. Currently, generating calorimeter
showers of interacting particles (electrons, photons, pions, ...) using GEANT4 is a major computational
bottleneck at the LHC, and it is forecast to overwhelm the computing budget of the LHC experiments
in the near future. Therefore there is an urgent need to develop GEANT4 emulators that are both fast
(computationally lightweight) and accurate. The LHC collaborations have been developing fast
simulation methods for some time, and the hope of this challenge is to directly compare new deep
learning approaches on common benchmarks. It is expected that participants will make use of
cutting-edge techniques in generative modeling with deep learning, e.g. GANs, VAEs and normalizing

flows.

This challenge is modeled after two previous, highly successful data challenges in HEP - the top
tagging community challenge and the LHC Olympics 2020 anomaly detection challenge.

@ Research Code Competition

IceCube Laboratory

Data is collected here and
sent by satellite to the data
warehouse at UW—Madison

Digital Optical
Module (DOM)

5,160 DOMs
deployed in the ice

and Open Data
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Fundamental Physics has a compelling story
to tell and an important role in Al4Science.

... and it is critical that we tell it!

FEuCAIF can help



Thank you!

Questions’?



