

Cosmology and Al

"Discovering new physics" is the new Turing test of Artificial General Intelligence (AGI)

Sam Altman (CEO of OpenAI): There are more breakthroughs required in order to get to AGI

Cambridge Student: "To get to AGI, can we just keep min maxing language models, or is there another breakthrough that we haven't really found yet to get to AGI?"

Sam Altman: "We need another breakthrough. We can still push on large language models quite a lot, and we will do that. We can take the hill that we're on and keep climbing it, and the peak of that is still pretty far away. But, within reason, I don't think that doing that will (get us to) AGI. If (for example) super intelligence can't discover novel physics I don't think it's a superintelligence. And teaching it to clone the behavior of humans and human text - I don't think that's going to get there. And so there's this question which has been debated in the field for a long time: what do we have to do in addition to a language model to make a system that can go discover new physics?"

See the final question around 1 hour 2 minutes in

ai_in_check @ai_in_check · Nov 16, 2023 Replying to @AISafetyMemes and @sama new sama video just droped

youtu.be/NjpNG0CJRMM

Our past lightcone: the playground of cosmological physics

What we want to learn

The initial conditions of the universe on the base of the past light cone

(curvature perturbations)

Computational Cosmology

How do we handle the vast scale hierarchies?

Galaxy surveys

The simulation-analysis asymmetry

- Computational simulation models have become very detailed digital twins of the universe.
- But data analysis has been based on restrictive analytical/perturbative/seminumerical approximations.

How to deal with complexity on small scales?

How to deal with complexity on small scales?

Computational Cosmology

Cosmological and Astrophysical Discovery

The promise of AI for cosmology

- Can we use AI to bridge the scale hierarchies?
- Can we use AI to have the same fidelity in data analysis as in modeling?

Machine learning, Artificial Intelligence, and Bayesian Analysis open a new way to connect theory and data towards more a more symmetrical analysis

This is made possible by breakthroughs in "Implicit Inference" methods and MLaccelerated generation/simulation models

In this approach cosmological and astrophysical physics connnect with data at a much more fine-grained level than in the past, unlocking large discovery potential.

The Simons Collaboration on "Learning the Universe"

- Recognizes the opportunity to cross scales gaps using recent ML breakthroughs
- International collaboration that brings together experts on
 - Star formation,
 - ISM,
 - Black hole accretion,
 - Galaxy formation and evolution,
 - Cosmology
 - ML, and
 - Bayesian Inference
- Goal: Prove the principle on current data sets and develop methods for the next generation
- Director: Greg Bryan
- PIs: Simone Ferraro, Lars Hernquist, Shirley Ho, Jens Jasche, Guilhem Lavaux, Eve Ostriker, Laurence Perreault-Levasseur, Aarti Singh, Rachel Somerville, Volker Springel, Ben Wandelt

We have no lack of data

Can we analyze data if all we can do is simulate it?

Yes!

A major shift over the last 5 years.

Likelihood is represented *implicitly* through simulations $d \leftrightarrow p(d|\theta)$

Let's do a simple example.

Benjamin Wandelt

Challenge: Keep a running count of the number of likelihood and prior evaluations!

This is *Implicit* Inference

- When likelihood and/or prior are not *explicitly* specified but *implicit* in...
 - simulations, generative models, labelled data.
- Various forms known as
 - Likelihood-free inference
 - Simulation-based inference
 - Approximate Bayesian Computation (ABC)

Machine learning takes us the rest of the way

- Many problems that we considered impossible now **solved**
 - Automated finding of informative data summary statistics
 - computing informative summaries for intractable models (*e.g.*, IMNN, FI)
 - Posteriors/likelihoods/priors for intractable models
 - Implicit Inference (likelihood-free, or simulation-based): LRE, DELFI
 - Routinely used to compute Bayesian posteriors (*e.g.*, Moment Networks)
 - Posterior samples for huge non-linear inverse problems (*e.g.,* Initial Conditions)
 - Bayesian Evidence for intractable models
 - Evidence Networks

IMNN: Charnock, Lavaux & Wandelt arXiv:1802.03537; LRE: Cranmer, Pavez & Louppe 1506.02169; Miller et al. 2107.01214 DELFI:Papamakarios, Murray + coauthors: 1705.07057, 1805.07226; Alsing & Wandelt 1712.00012; Alsing, Feeney & Wandelt 1801.01497, arXiv:1903.01473; MN & EN: Jeffrey & Wandelt arXiv:2011.05991, 2305.11241; FI: Coulton & Wandelt 2305.08994, ICs: Legin et al., 2304.03788

Simplest example

 What do you train a ML model f(x) to compute when you train it with (x, y) pairs to predict y from x, minimizing squared error?

$$\begin{split} L &= \sum_{i} (f(x_{i}) - y_{i})^{2} \\ &\approx \int (f(x) - y)^{2} p(x, y) dx dy \\ &\text{minimize} \qquad \rightarrow \qquad \hat{f} = \int y \ p(y|x) dy \\ & \text{Benjamin Wandelt} \end{split}$$

MOMENT AND POSTERIOR MARGINAL NETWORKS

Main idea: construct $\mathcal{F}(d)$, $\mathcal{G}(d)$ to go directly from data to posterior.

• Moment networks: obtain posterior moments directly from data by training NNs to solve $\langle \theta \rangle_{p(\theta|d)} = \underset{\mathcal{F}(d)}{\operatorname{arg\,min}} \int ||\theta - \mathcal{F}(d)||_2^2 p(d,\theta) ddd\theta$ $\operatorname{Var}[\theta]_{p(\theta|d)} = \underset{\mathcal{G}(d)}{\operatorname{arg\,min}} \int || ||\theta - \langle \theta \rangle_{p(\theta|d)} ||_2^2 - \mathcal{G}(d) ||_2^2 p(d,\theta) ddd\theta$

(Jeffrey & Wandelt arXiv:2011.05991, presented at NeurIPS 2020)

Example: CAMELS hydrosimulations

Benjamin Wandelt

Paco Villaescusa-Navarro, Shy Genel, Daniel Angles-Alcazar, and the CAMELS collaboration

13 fields from

1000 IllustrisTNG sims 1000 SIMBA sims and 2000 matched Nbody sims

arXiv:2109.10915

https://camels-multifielddataset.readthedocs.io

SBI: COSMOLOGY FROM SMALL-SCALE HYDRO

SBI: COSMOLOGY FROM SMALL-SCALE HYDRO

Examples: Implicit Inference to Infer Reionization Parameters from 3D 21cm Light Cones

Zhao, Mao, Cheng, Wandelt arXiv:2105.03344

Example: optimal cosmological inference from graphs

Uses message passing graphs to encode *rotational and translational symmetries* and infer cosmological parameters

Charnock et al., arXiv: 1802:03537; Makinen et al., arXiv:2207.05202

Analysis of galaxy surveys: now have proof of principle on actual data with SIMBIG

Analysis of galaxy surveys: now have proof of principle on actual data with SIMBIG

Hahn et al., arXiv:2211.00723

Learning the Universe Implicit Likelihood Inference (LtU-ILI)

An all-in-one framework for implicit inference in astronomy and cosmology.

- A lightweight, user-focused design for both exploratory analysis and production testing.
- Automation of: setup, preprocessing, model ensembling, training/testing, and validation metrics.
- All-inclusive of different methods, including: Neural Posterior/Likelihood/Ratio Estimation and sequential learning
- Easy integration with modern embedding networks such as CNNs and graph neural networks
- Combines multiple backends (sbi, pydelfi, lampe) for exhaustive apples-to-apples comparisons
- Jupyter and command-line interface

Matt Ho, Simon Ding, Nicolas Chartier, Chirag Modi, Pablo Lemos, Deaglan Bartlett, Shivam Pandey, Lucia Perez, Guilhem Lavaux, Ludvig Doeser, Lucas Makinen, Carolina Cuesta, Axel Lapel, Hadi Sotoudeh

Best part: A full inference pipeline in 5 lines!

... # Imports

```
X, Y = load_data()
                                               # Load training data and parameters
loader = ili.dataloaders.NumpyLoader(X, Y)
                                               # Create a data loader
trainer = ili.inference.InferenceRunner.load(
                                       # Choose Neural Posterior Estimation
 backend = 'lampe', engine = 'NPE',
 prior = ili.utils.Uniform(low=-1, high=1),  # Define a prior
 nets = [ili.utils.load_nde_lampe(model='maf')] # Define a neural network architecture
posterior, = trainer(loader)
                                               # Run training to map data -> parameters
samples = posterior.sample(x[0], (1000,))
                                               # Generate 1000 samples from the posterior
                                                         ltu-ili
                   arXiv:2402.05137
                                            https://github.com/maho3/ltu-ili
```

Real data: KiDS-1000 cosmic shear analysis

KiDS-1000 cosmic shear analysis

KiDS-1000 cosmic shear analysis: "pre-" marginalization test

KiDS-1000 cosmic shear analysis: convergence with number of simulations

Beyond parameters

First initial condition reconstructions from fully nonlinear simulations with Implicit Inference and conditional score-based diffusion models

R. Legin *et al.*, arxiv:2304.03788

Benjamin Wandelt

"Score"-based Diffusion: Training

- Consider a random walk of images
- Initialise with training example as initial condition
- At every step learn a denoiser (the "score")
- Add Gaussian noise at every step
- Central limit theorem: this has an Gaussian attractor

Song et al 2021, +++

Score"-based Diffusion: Generation

- Use trained denoiser to solve a series of inference problems to go from Gaussian noise back to a sample of the initial conditions
- If the number of steps is large enough, each step is a Gaussian inference problem.
- Train a neural network on simulations to learn the posterior mean for each of these steps

Song et al 2021, +++

Train full n-body dynamics

- QUIJOTE: Largest release of N-body simulation data to date — 43,100 full GADGET 3 simulations (1 Gpc)³, 512³ or 1024³ particles — ~1 PB of data
- Goal: quantify statistics information content of non-Gaussian non-linear density field about cosmological parameters
- Includes full dark matter snapshots, halo and void catalogues, and many pre-computed statistics.

Villaescusa-Navarro et al, arXiv:1909.05273

- 1 (Gpc)³ GADGET
 1024³ particle
 simulation at z=0
- Binned on 128^3 grid
- Resolution 8 Mpc/h

Faithful reconstruction...

... including uncertainties (posterior variance)

Present-Day z = 0

R. Legin *et al.,* arxiv:2304.03788

Accurate reconstructions

Points to note:

- full non-linear gravity
- No need for differentiability of the computational model

Going even more non-linear

25 Mpc/h

Benjamin Wandelt

Extremely non-linear regime cosmological ICs Comparable accuracy as large-scale result!

How many simulations are enough?

- How do we know if inference is limited by the number of training simulations?
- Combine training simulations with a set of sims in the neighborhood of a fiducial point
- Simple experiment: power spectrum inference from Quijote sims

A. Bairagi et al., in prep.

A. Bairagi et al., in prep.

Benjamin Wandelt

Cosmological neural scaling law

A. Bairagi et al., in prep.

Benjamin Wandelt

How will we get all the simulations?

- Use/generate simulation corpora (Quijote and Abacus n-body sims, CAMELS hydrosimulations, ...)
- Emulators! (e.g. Ramanah et al 2019, Jamieson et al 2023,...)

From fast PM to halos with CHARM

Pandey, Modi, Wandelt, Lavaux 2023, NeurIPS

Benjamin Wandelt

Works like a CHARM!

Pandey, Modi, Wandelt, Lavaux 2023, NeurIPS

Benjamin Wandelt

From information to insight

Can we use machine learning to discover ...new models (e.g. symbolic searches)? ...the most important degrees of freedom in data?

Evidence-based Model Comparison using Implicit Inference

 $\frac{p(d|\theta)p(\theta)}{p(d)}$ $p(\theta|d)$ -Actually, $p(d|M_i)$

Jeffrey & Wandelt, arXiv:2305.11241

Bayesian model comparison

$$\frac{p(M_i|d)}{p(M_j|d)} = \frac{p(d|M_i)}{p(d|M_j)} \frac{p(M_i)}{p(M_j)}$$

Bayes factor **K**

Jeffrey & Wandelt, arXiv:2305.11241

Bayesian model comparison

Even if likelihood and posterior are explicitly given

- Likelihood can be costly to evaluate
- Evidence can be hard to compute

$$P(\theta|d,M) = \frac{P(d|\theta,M)P(\theta|M)}{P(d|M)}$$
$$\implies P(d|M) = \int P(d|\theta,M)P(\theta|M)d\theta$$

Jeffrey & Wandelt, arXiv:2305.11241

Benjamin Wandelt

Example: evidence ratio with 100 parameters

Evidence Networks trained to compute evidence ratio based only on simulated examples and a custom loss function.

This evidence computation does not explicitly depend on number of parameters!

Jeffrey & Wandelt, arXiv:2305.11241

Evidence nets: more accurate and faster than best-of-class nested sampling method

Computational cost of evidence network includes time to generate sims and train. Application to a given data set is nearly instantaneous.
Works on traditionally intractable examples

Jeffrey & Wandelt, arXiv:2305.11241

Benjamin Wandelt

Information **O**rdered **B**ottlenecks

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

k = 0

Scientific Discovery from **Ordered Information** Decomposition

Matthew Ho (UvA 1 @ 4:20pm)

Key insights

- Cosmology is no longer data-limited but model-limited.
- ML allows us to recast physics questions as optimization problems.
- Al cannot do it alone: Al + physics/astronomy
- Combine new machine learning methods, fast simulation techniques, and statistical methods
- Need interpretability for insight and discovery

Benjamin Wandelt