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GW ASTROPHYSICAL SOURCES
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ITF DETECTORS AND THEIR SENSITIVITY
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2ND GENERATION GROUND BASED DETECTORS
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WHY MORE THAN 1 DETECTOR?

arXiv:1304.0670

Source localization using only timing for a two-
site network yields an annulus on the sky.   

For three detectors, the time delays restrict the 
source to two sky regions which are mirror images 
with respect to the plane passing through the 
three sites. 

With four or more detectors, timing information 
alone is sufficient to localize to a single sky region, 
<10 deg2 for some signals.
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THE O-RUN TIMELINE

https://observing.docs.ligo.org/plan/



Image credit: Carl Knox,Hannah Middleton, 

Federica Grigoletto, LVK
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GW170817: THE FIRST MULTI-MESSENGER GW EVENT

coincident short GRBs detected in gamma rays 

•first direct evidence that at least some BNS mergers are 
progenitors of short GRBs

the host galaxy has been identified: NGC 
4993

an optical/infrared/UV counterpart 
(AT2017gfo) has been detected

• first spectroscopic identification of a kilonova

An X-ray and a radio counterparts have been 
identified

•off-axis afterglow from a structured jet

Abbott et al. 2017 and refs. therein
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DETECTION SUMMARY UP TO O4A

https://gracedb.ligo.org/superevents/public/O4/

O4 Significant Detection Candidates: 81 (92 Total - 11 
Retracted)
O4 Low Significance Detection Candidates: 1610 (Total)
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GRAVITATIONAL WAVE  DETECTOR DATA

Time series sequences:
noisy time series with low amplitude GW signal buried in
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THE DATA ANALYSIS WORKFLOW
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DATA REPRESENTATIONS

Time-domain Frequency-domain

Time-frequency-domain Wavelet-domain
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GRAVITATIONAL WAVE TRANSIENT SIGNAL SOURCES

Compact binary coalescences Core collapse Supernovae

Credit

LIGO/Caltech/MIT/R. Hurt (IPAC)
ESA/XMM-Newton & NASA/Chandra (X-ray); 

NASA/WISE/Spitzer (Infrared)
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GRAVITATIONAL WAVE TRANSIENT SIGNALS

CBC signals CCSN signals
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HOW WE DETECT TRANSIENT SIGNALS: MODELED SEARCH 

Matched-filter

CBC search

https://github.com/gw-odw/odw-2023/
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HOW MANY TEMPLATES?

To cover in efficient way the parameters space, we build 

a templates bank requiring that the signal can be 

detected with a maximum loss of 3% of its SNR

~250000 waveforms used for GW150914

LVC Phys. Rev. X 6 (2016)
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DETECTOR NOISE: IS IT IDEAL?

Broadband

Transient noise signals:

Glitches

Gravity Spy, Zevin et al (2017)

https://www.zooniverse.org/projects/zooniverse/gravity-spy

https://www.zooniverse.org/projects/zooniverse/gravity-spy
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NON-STATIONARY  AND TRANSIENT NOISE



Example of Scattered light glitch
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PARAMETER ESTIMATION

Estimation of physical quantities that 
describe a detected GW signal

Bayesian framework allows to perform 
a quantitative analysis of GW signals 

and to calculate statistical significance 
of the physical parameters that best 

match a detected signal

MCMC for GW parameter estimation. 
GW waveforms and priors needed for 

parameter estimation
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HOW WE DETECT TRANSIENT SIGNALS: UN-MODELED 

SEARCH 

Phys. Rev. D 93, 042004 (2016)
Class.Quant.Grav.25:114029,2008

Burst search

Strategy: look for excess 

power in single detector or 

coherent/coincident in 

network data

Example cWB 

(https://gwburst.gitlab.io/)

Time-domain data preprocessed

Wavelet decomposition

Event reconstruction

https://gwburst.gitlab.io/


AI APPLICATIONS FOR GW

LIMITED EXAMPLES  
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Read more…

E. Cuoco et al 2021 Mach. Learn.: Sci. Technol. 2 011002

E. Cuoco et al Living Review in Relativity, submitted
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THE DATA ANALYSIS WORKFLOW AND AI

B P Abbott et al 2020 
Class. Quantum Grav. 37 
055002

E. Cuoco, M. Cavaglià, Ik. S. Heng, D. Keitel. C. Messenger,

Living Review in Relativity, submitted



NOISE

•Data cleaning

•Glitch classification

•Nonlinear noise

•ITF anomaly detection

•Glitch simulation

BURST

•ML-based method for 
detection

•CCSN waveform classification

CBC

•Detection

•Early warning

•Anomaly detection

CW

•Clustering in the parameter 
space

•Computing efficiency

SWBG

•Noise correlation

PARAMETER 
ESTIMATION

•Faster and efficient methods

ALERT SYSTEM

•Ad hoc hardware/software 
solution?
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E. Cuoco, M. Cavaglià, Ik. S. Heng, D. Keitel. C. Messenger,

Living Review in Relativity, submitted

GRAVITATIONAL WAVE SCIENCE AND AI



Waveform 
depends on 

progenitor star

Different 
emission 

mechanisms 
(Proto-neutron 
star oscillation, 

Standing 
Accretion Shock 

Instability 
(SASI),..)

Largely 
Stochastic

Best waveform 
models from 

computationally 
expensive 3D 
simulations

Different 
simulation 

models

Rare (~100 yrs 
in Milky Way)

Need an alternative to matched filter 

approach

Ott et al. (2017) 
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GWS FROM CORE COLLAPSE SUPERNOVAE
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CORE-COLLAPSE SUPERNOVAE MODELS

Iess, Cuoco, Morawski, Powell, 

https://doi.org/10.1088/2632-2153/ab7d31

Andresen s11: Low amplitude, non-exploding, peak emission at lower frequencies

Radice s13: Non-exploding, lower amplitudes

Radice s25: Late explosion time, standing accretion shock instability (SASI), high peak 
frequency

Powell s18: High peak frequency, exploding model

Powell He3.5: ultra-stripped helium star, high peak frequency, exploding model

https://doi.org/10.1088/2632-2153/ab7d31


SINE GAUSSIAN & SCATTERED LIGHT GLITCHES

Distances: 
VO3 0.01 kpc to 10 kpc
ET 0.1 kpc to 1000 kpc 

Random sky localization

Large SNR range

Schutz (2011)

BACKGROUND STRAIN :  simulated data sampled at 4096 

Hz built from VO3 and ET projected sensitivities 
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MDC AND CCSN GW SIMULATIONS
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ET, MERGED 1D & 2D CNN

Train on all (4 CCSNe waveform models + glitches).

Test on all.

TRAINED 

CNN MODEL

Test 

samples

he3.5 Sine 

gauss.

s18 s11 s13 s25 Scatt. 

light

COMPLEX TASK LONGER TRAINING (> 1 hr)
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MULTILABEL CLASSIFICATION



44 segments 
(4096s per 
segment) 
from O2 

science run.

Added m39, 
y20, s18np 

models 
(Powell, 
Mueller 
2020).

Fixed 
distance of 1 

kpc. 

Added LSTM 
Networks, 
suited for 

time series 
data.

Added Three 
ITF 

classification.

Powell s18np: differs from s18 since simulation does not 
include perturbations from the convective oxygen shell. As 
a result, this model develops strong SASI after collapse.

Powell y20: non-rotating, 20 solar mass Wolf-Rayet star 
with solar metallicity.

Powell m39: rapidly rotating Wolf-Rayet star with an initial 
helium star mass of 39 solar masses

Powell and  Müller (2020)
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TEST ON O2 REAL DATA



Noise PSD is non stationary.

Multiple Glitch Families.

SNR distribution is affected by ITF antenna pattern.

Dataset: ~15000 samples.

Imbalanced Dataset due to different model amplitudes.

CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  
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REAL NOISE FROM O2 SCIENCE RUN



MULTILABEL CLASSIFICATION ON REAL O2 NOISE (SINGLE ITF, LIGO H1, DIFFERENT 

MODELS)

• Bi-LSTM, 2 recurrent layers

• ~10 ms/sample 

• Best weights over 100 epochs

• 1D-CNN, 4 convolutional layers

• ~2 ms/sample 

• Best weights over 20 epochs

• 2D-CNN, 4 convolutional layers

• ~3 ms/sample 

• Best weights over 20 epochs

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  
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MULTI-LABEL TASK



Dataset breakdown: 675 noise, 329 s18p, 491 s18np, 
115 he3.5, 1940 m39, 1139 y20, 76 s13, 1557 s25.

Input to NNs have additional dimension (ITF) 

L1

H1

V1

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  
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ANALYSIS ON 3 DETECTORS AND MERGED 

MODELS ON O2 DATA



DETERMINING THE CORE-COLLAPSE SUPERNOVA EXPLOSION 

MECHANISM

Jade Powell, Alberto Iess, Miquel Llorens-Monteagudo, Martin Obergaulinger, Bernhard Muller, 

Alejandro TorresFornè, Elena Cuoco, and Josè A. Font. Determining the core-collapse supernova 

explosion mechanism with current and future gravitational-wave observatories. 11 2023, 

2311.18221, accepted for publication on PRD

ET LIGO NEMO

2D-CNN
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GRAVITATIONAL WAVE MODELLING: TEMPLATE MATCHING

GW detection of binary systems relies on matched-filter 
analysis. Template accuracy is crucial!

Accurate solutions of the Einstein equations for binary 
sources can  be obtained with Numerical Relativity 
(NR) simulations.

High computational cost prevent the production of NR 
waveforms catalogs spanning the full parameter 
space.

LIGO and Virgo rely on approximate solutions that are 
traditionally obtained through the effective-one-body or 
phenomenological modeling approaches.

How can machine learning help?
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WAVEFORM BUILDING
• Gaussian process regression to compute the waveform at points 

of the parameter space not covered by numerical relativity. 

• GPR has been used to build surrogate models of both non-

precessing and precessing BBH systems.

See also:

Z. Doctor et al, “Statistical gravitational 

waveform models: What to simulate 

next?”

Phys. Rev. D 96, 123011 (2017)



4/23/2024ELENA CUOCO, EGO 35

CBC DETECTION

See also:

D. George and E.A. Huerta Phys. Lett. B 778 64–70 (2018)

Deep convolutional neural network to search for 
binary black hole gravitational-wave signals.

Input is the whitened time series of measured 
gravitational-wave strain in Gaussian noise.

Sensitivity comparable to match filtering.
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CBC DETECTION
• Comparison of 6 algorithms for binary black hole 

searches.

• Four different data sets of different complexity (from 

Gaussian noise to varying real detector PSD)

• Benchmark data set for algorithm testing.

A few excerpts from the paper conclusions:

• Machine learning search algorithms are competitive in 

sensitivity compared to state-of-the-art searches on 

simulated data and the limited parameter space explored  

in this challenge.

• Most of the tested machine learning algorithms struggle 

to effectively handle real noise, which is contaminated 

with non-Gaussian noise artifacts.

• Traditional search algorithms are capable of detecting 

signals at lower FARs, thus making detections more 

confident.

• The tested machine learning searches struggle to identify

long duration signals.
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EXAMPLE FOR DETECTION/CLASSIFICATION FOR CBC SIGNALS: 

ANOMALY DETECTION  

Create a deep learning pipeline allowing detection of 

anomalies defined in terms of transient signals: 

gravitational waves as well as glitches.

Additionally: Consider reconstruction of the signal for the 

found anomalies.

AUTO-ENCODER WORKFLOW

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 2021 Mach. 
Learn.: Sci. Technol. 2 045014
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ASTROPHYSICAL INTERPRETATION OF GW SOURCES

● Current parameter estimation 

techniques for compact binary coalesce 

signals rely on Bayesian analysis 

(posteriors + evidence).

● Computationally costly!

● Need to dramatically speed up the

process!

● How can machine learning help?
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RAPID INFERENCE OF SOURCE PARAMETERS

• Classifiers (Kneighbors, genetic, random forests) for HasNS 

and HasRemnant properties of sources in low-latency

• Train and test on LIGO-Virgo online MDC

• Integrate in the LVK low-latency infrastructure and run in O4

See also:

S. Sharma Chaudhary, MC, D. 

Chatterjee, S. Ghosh, in preparation
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PARAMETER ESTIMATION

• Autoregressive normalizing flows for rapid 

likelihood-free inference of binary black hole 

system parameters.

• Maps a multivariate standard normal 

distribution into the posterior distribution of 

system parameters. 

• Performance comparable to Markov chain 

Monte Carlo.
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AN OUTDATED OVERVIEW



G2NET 
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GRAVITY SPY

• Team: M. Razzano, F. Di Renzo, F. Fidecaro (@Unipi), 
G. Hemming, S. Katsanevas (@EGO)

• Launched @ Nov 2019 - REINFORCE Project
H2020-SWAFS (2019-2022)

https://www.zooniverse.org/projects/reinforce/gwitchhunters

http://www.gravityspy.org/Citizen scientists contribute to 
classify glitches

More details in  Zevin+17  
10.1088/1361-6382/aa5cea

https://doi.org/10.1016/j.ins.2018.02.068

GWHITCHUNTER

CITIZEN SCIENCE

ELENA CUOCO, EGO 4/23/2024

https://arxiv.org/ct?url=https://dx.doi.org/10.1088/1361-6382/aa5cea&v=e08367bb


WHAT’S NEXT?

Use of ML pipeline for ITF instrumental studies (from lock-loss to data cleaning)

ML pipeline in production: MLy-Pipeline (Emily), was added to the unmodelled burst 
searches as standalone machine learning GW detection pipeline

On-line parameter estimation for Fast alert system

Multi-messenger analysis through AI applications

45ELENA CUOCO, EGO 4/23/2024



THANK YOU

TWITTER: @ELENACUOCO

ELENA.CUOCO@EGO-GW.IT
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