# GRAVITATIONAL WAVE PHYSICS AND ARTIFICIAL INTELLIGENCE

ELENA CUOCO

ECOPERATIONAL EUROPEAN Gravitational Observatory

1<sup>st</sup> EuCAIF Conference, Amsterdam 30 April- 3May

ELENA CUOCO, EGO

#### GW ASTROPHYSICAL SOURCES



### ITF DETECTORS AND THEIR SENSITIVITY



ELENA CUOCO, EGO

### 2ND GENERATION GROUND BASED DETECTORS

#### **LIGO Hanford**

LIGO Livingston

#### Operational Planned

### **Gravitational Wave Observatories**

**GEO600** 

KAGRA

LIGO India

#### WHY MORE THAN 1 DETECTOR?

Source localization using only timing for a twosite network yields an **annulus** on the sky.

For three detectors, the time delays restrict the source to two sky regions which are mirror images with respect to the plane passing through the three sites.

With four or more detectors, timing information alone is sufficient to localize to a single sky region, <10 deg<sup>2</sup> for some signals.



arXiv:1304.0670

- 2 detector → 100 -1000 deg<sup>2</sup>
- I 3 detector → 10 100 deg<sup>2</sup>
- 4 detector  $\rightarrow$  < 10 deg<sup>2</sup>

### THE O-RUN TIMELINE

The detector strain sensitivity is the minimum *detectable* value of the strain produced by an incoming GW:

 $\Rightarrow$  It is determined by the detector noise.

BNS inspiral range: the distance, averaged over GW polarizations and directions in the sky, at which a single detector can observe with matched-filter Signal-to-noise Ratio (SNR) of 8 the inspiral of two neutron stars.



4/23/2024

### GRAVITATIONAL WAVE **MERGER** DETECTIONS



#### KEY



Note that the mass estimates shown here do net include uncertainties, which is why the final mass is sensitimes larger than the sum of the primary and secondary masses. In actuality, the final mass is smaller than the primary glus the secondary mass.

The events listed here pass one of two thresholds for detection. They either have a probability of being astrophysical of at least 50%, or they pass a false alarm rate threshold of less than 1 per 3 years.



Image credit: Carl Knox, Hannah Middleton, Federica Grigoletto, LVK

### GW170817: THE FIRST MULTI-MESSENGER GW EVENT



### DETECTION SUMMARY UP TO O4A

O4 Significant Detection Candidates: **81** (92 Total - 11 Retracted) O4 Low Significance Detection Candidates: **1610** (Total)



https://gracedb.ligo.org/superevents/public/04/

#### GRAVITATIONAL WAVE DETECTOR DATA



### THE DATA ANALYSIS WORKFLOW



### DATA REPRESENTATIONS



Time-domain







Wavelet-domain

#### GRAVITATIONAL WAVE **TRANSIENT** SIGNAL SOURCES

### **Compact binary coalescences**



Credit LIGO/Caltech/MIT/R. Hurt (IPAC)

### **Core collapse Supernovae**



ESA/XMM-Newton & NASA/Chandra (X-ray); NASA/WISE/Spitzer (Infrared)

### GRAVITATIONAL WAVE TRANSIENT SIGNALS





### HOW WE DETECT TRANSIENT SIGNALS: MODELED SEARCH

#### Matched-filter



### **CBC** search

- pyCBC (Usman et al, 2015)
- MBTA (Adams et al. 2015)
- gstlal-SVD (Cannon et al. 2012)



https://github.com/gw-odw/odw-2023/

#### HOW MANY TEMPLATES?

To cover in efficient way the parameters space, we build a templates bank requiring that the signal can be detected with a maximum loss of 3% of its SNR



 $\sim$ 250000 waveforms used for GW150914



#### DETECTOR NOISE: IS IT IDEAL?

Spectrogram of V1:spectro\_LSC\_DARM\_300\_100\_0\_0 : start=1189644747.000000 (Sun Sep 17 00:52:09 2017 UTC)



17

#### NON-STATIONARY AND TRANSIENT NOISE

×





#### **Example of Scattered light glitch**



ELENA CUOCO, EGO

#### PARAMETER ESTIMATION





a quantitative analysis of GW signals and to calculate statistical significance of the physical parameters that best match a detected signal





#### HOW WE DETECT TRANSIENT SIGNALS: UN-MODELED SEARCH Burst search

Coherent WaveBurst was used in the first direct detection of gravitational waves (GW150914) by LIGO and is used in the ongoing analyses on LIGO and Virgo data.



Time-Frequency maps of GW150914: Livingston data (left), Hanford data (right) First screenshot of GW150914 event

> Phys. Rev. D 93, 042004 (2016) Class.Quant.Grav.25:114029,2008



Strategy: look for excess power in single detector or coherent/coincident in network data



Example cWB (https://gwburst.gitlab.io/)

Time-domain data preprocessed Wavelet decomposition Event reconstruction

## AI APPLICATIONS FOR GW

#### LIMITED EXAMPLES

Read more...

E. Cuoco et al 2021 Mach. Learn.: Sci. Technol. 2 011002E. Cuoco et al Living Review in Relativity, submitted

#### THE DATA ANALYSIS WORKFLOW AND AI



Living Review in Relativity, submitted

### GRAVITATIONAL WAVE SCIENCE AND AI

| <ul> <li>NOISE</li> <li>Data cleaning</li> <li>Glitch classification</li> <li>Nonlinear noise</li> <li>ITF anomaly detection</li> <li>Glitch simulation</li> </ul> | <ul> <li>BURST</li> <li>ML-based method for detection</li> <li>CCSN waveform classific</li> </ul> | CBC<br>• Detection<br>• Early warnin<br>• Anomaly det | ng<br>tection                             | CW<br>• Clustering in the parameter<br>space<br>• Computing efficiency |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|
| SWBG<br>• Noise correlat                                                                                                                                           | nion<br>• Faster                                                                                  | METER<br>/IATION<br>and efficient methods             | ALERT SYS<br>• Ad hoc hardwares solution? | TEM<br>are/software                                                    |

E. Cuoco, M. Cavaglià, Ik. S. Heng, D. Keitel. C. Messenger, Living Review in Relativity, submitted

#### GWS FROM CORE COLLAPSE SUPERNOVAE





#### Ott et al. (2017)

| Po | tential | expl | losion | mec | hanism |
|----|---------|------|--------|-----|--------|
|----|---------|------|--------|-----|--------|

| GW emission<br>Process       | MHD mechanism (rapid rotation) | Neutrino mechanism<br>(slow/no rotation) | Acoustic mechanism (slow/no rotation) |
|------------------------------|--------------------------------|------------------------------------------|---------------------------------------|
| Rotating collapse and Bounce | Strong                         | None/weak                                | None/weak                             |
| 3D rotational instabilities  | Strong                         | None                                     | None                                  |
| Convection<br>& SASI         | None/weak                      | Weak                                     | Weak                                  |
| PNS g-modes                  | None/weak                      | None/weak                                | Strong                                |

### **CORE-COLLAPSE SUPERNOVAE MODELS**



s11

s13

<del>s</del>25

s18

he3.5

0.8

0.9



#### Total accuracy: 89.6 % he3.5 92.6 1.7 3.3 1.9 0.8 0.3 0.3 80 Train on <u>all</u> (4 CCSNe waveform models + glitches). s18 1.6 92.2 0.0 0.4 0.7 0.1 0.0 Test on all. 60 Predicted data s11 1.1 0.7 84.1 2.3 2.0 0.2 0.2 s13 2.0 1.0 5.9 88.4 2.2 0.5 0.4 TRAINED Test 40 s25 1.3 1.8 2.6 3.1 91.6 0.1 0.5 **CNN MODEL** samples Sine Gauss. 0.9 2.0 1.5 0.7 0.9 87.8 8.7 20 Scatt. Light 0.5 0.6 2.6 3.1 1.9 11.0 89.9 Sine Gauss. Light 520 53 ST 525 ne? .? s25 he3.5 s18 Scatt. s11 s13 Sine 0 light gauss. Real data COMPLEX TASK LONGER TRAINING (> 1 hr)

### MULTILABEL CLASSIFICATION

ELENA CUOCO, EGO

ET, MERGED 1D & 2D CNN

#### TEST ON O2 REAL DATA





### REAL NOISE FROM O2 SCIENCE RUN



CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)

|            | Triggers |       |       |
|------------|----------|-------|-------|
| Detector   | Signal   | Noise | Total |
| Virgo V1   | 9273     | 47901 | 57174 |
| Ligo L1    | 10480    | 3810  | 14290 |
| Ligo H1    | 10984    | 4103  | 15087 |
| L1, H1, V1 | 5647     | 675   | 6322  |



#### MULTI-LABEL TASK

- Bi-LSTM, 2 recurrent layers
- ~10 ms/sample
- Best weights over 100 epochs

- **<u>1D-CNN</u>**, 4 convolutional layers
- ~2 ms/sample
- Best weights over 20 epochs

- 2D-CNN, 4 convolutional layers
- ~3 ms/sample
- Best weights over 20 epochs



A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)

#### ANALYSIS ON 3 DETECTORS AND MERGED MODELS ON O2 DATA

Dataset breakdown: 675 noise, 329 s18p, 491 s18np, 115 he3.5, 1940 m39, 1139 y20, 76 s13, 1557 s25.

Input to NNs have additional dimension (ITF)





A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)

# DETERMINING THE CORE-COLLAPSE SUPERNOVA EXPLOSION MECHANISM





Jade Powell, Alberto Iess, Miquel Llorens-Monteagudo, Martin Obergaulinger, Bernhard Muller, Alejandro TorresFornè, Elena Cuoco, and Josè A. Font. *Determining the core-collapse supernova explosion mechanism with current and future gravitational-wave observatories*. 11 2023, 2311.18221, accepted for publication on PRD

#### GRAVITATIONAL WAVE MODELLING: TEMPLATE MATCHING



GW detection of binary systems relies on matched-filter analysis. Template accuracy is crucial!

Accurate solutions of the Einstein equations for binary sources can be obtained with Numerical Relativity (NR) simulations.

High computational cost prevent the production of NR waveforms catalogs spanning the full parameter space.

LIGO and Virgo rely on approximate solutions that are traditionally obtained through the effective-one-body or phenomenological modeling approaches.

How can machine learning help?

### WAVEFORM BUILDING

#### PHYSICAL REVIEW D 101, 063011 (2020)

Precessing numerical relativity waveform surrogate model for binary black holes: A Gaussian process regression approach

D. Williams<sup>®\*</sup> and I. S. Heng<sup>®</sup> SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom

J. Gair Max Planck Institute for Gravitational Physics, Potsdam Science Park, Am Mühlenberg 1, D-14476 Potsdam, Germany

J. A. Clark and B. Khamesra Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA



- Gaussian process regression to compute the waveform at points of the parameter space not covered by numerical relativity.
- GPR has been used to build surrogate models of both nonprecessing and precessing BBH systems.

spin 2;





#### See also:

Z. Doctor et al, "Statistical gravitational waveform models: What to simulate next?"

Phys. Rev. D 96, 123011 (2017)

#### **CBC DETECTION**

#### PHYSICAL REVIEW LETTERS 120, 141103 (2018)

Editors' Suggestion

#### Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy

Hunter Gabbard,<sup>\*</sup> Michael Williams, Fergus Hayes, and Chris Messenger SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom



Deep convolutional neural network to search for binary black hole gravitational-wave signals.

Input is the whitened time series of measured gravitational-wave strain in Gaussian noise.

#### Sensitivity comparable to match filtering.



#### **CBC DETECTION**

#### MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data Challenge

Marlin B. Schäfer<sup>©1,2</sup>, Ondřej Zelenka<sup>©3,4</sup>, Alexander H. Nitz<sup>©1,2</sup>, He Wang<sup>©5</sup>, Shichao Wu<sup>©1,2</sup>, Zong-Kuan Guo<sup>©5</sup>, Zhoujian Cao<sup>©6</sup>, Zhixiang Ren<sup>©7</sup>, Paraskevi Nousi<sup>8</sup>, Nikolaos Stergioulas<sup>©9</sup>, Panagiotis Iosif<sup>©10,9</sup>, Alexandra E. Koloniari<sup>9</sup>, Anastasios Tefas<sup>8</sup>, Nikolaos Passalis<sup>8</sup>, Francesco Salemi<sup>©11,12</sup>, Gabriele Vedovato<sup>©13</sup>, Sergey Klimenko<sup>14</sup>, Tanmaya Mishra<sup>®14</sup>, Bernd Brügmann<sup>©3,4</sup>, Elena Cuoco<sup>915,16,17</sup>, E. A. Huerta<sup>®18,19</sup>, Chris Messenger<sup>©20</sup>, Frank Ohme<sup>91,2</sup>



- Comparison of 6 algorithms for binary black hole searches.
- Four different data sets of different complexity (from Gaussian noise to varying real detector PSD)
- Benchmark data set for algorithm testing.

A few excerpts from the paper conclusions:

- Machine learning search algorithms are competitive in sensitivity compared to state-of-the-art searches on simulated data and the limited parameter space explored in this challenge.
- Most of the tested machine learning algorithms struggle to effectively handle real noise, which is contaminated with non-Gaussian noise artifacts.
- Traditional search algorithms are capable of detecting signals at lower FARs, thus making detections more confident.
- The tested machine learning searches struggle to identify long duration signals.

# EXAMPLE FOR DETECTION/CLASSIFICATION FOR CBC SIGNALS: ANOMALY DETECTION

Create a deep learning pipeline allowing detection of anomalies defined in terms of **transient signals**: gravitational waves as well as glitches.

Additionally: Consider **reconstruction of the signal** for the found anomalies.

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 2021 Mach. Learn.: Sci. Technol. 2 045014

#### AUTO-ENCODER WORKFLOW



#### ASTROPHYSICAL INTERPRETATION OF GW SOURCES

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 241:27 (13pp), 2019 April © 2019. The American Astronomical Society. All rights reserved.



#### BILBY: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy

Gregory Ashton<sup>1,2</sup>, Moritz Hübner<sup>1,2</sup>, Paul D. Lasky<sup>1,2</sup>, Colm Talbot<sup>1,2</sup>, Kendall Ackley<sup>1,2</sup>, Sylvia Biscoveanu<sup>1,2,3</sup>, Qi Chu<sup>4,3</sup>, Atul Divakarla<sup>1,2,6</sup>, Paul J. Easter<sup>1,2</sup>, Boris Goncharov<sup>1,2</sup>, Francisco Hernandez Vivanco<sup>1,2</sup>, Jan Harms<sup>7,8</sup>, Marcus E. Lower<sup>1,9,10</sup>, Grant D. Meadors<sup>1,2</sup>, Denyz Melchor<sup>1,2,11</sup>, Ethan Payne<sup>1,2</sup>, Matthew D. Pitkin<sup>12</sup>, Jade Powell<sup>9,10</sup>, Nikhil Sarin<sup>1,2</sup>, Rory J. E. Smith<sup>1,2</sup>, and Eric Thrane<sup>1,2</sup>



#### PHYSICAL REVIEW D 91, 042003 (2015)

Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library

J. Veitch,<sup>1,2,\*</sup> V. Raymond,<sup>3</sup> B. Farr,<sup>4,5</sup> W. Farr,<sup>1</sup> P. Graff,<sup>6</sup> S. Vitale,<sup>7</sup> B. Aylott,<sup>1</sup> K. Blackburn,<sup>3</sup> N. Christensen,<sup>8</sup> M. Coughlin,<sup>9</sup> W. Del Pozzo,<sup>1</sup> F. Feroz,<sup>10</sup> J. Gair,<sup>11</sup> C.-J. Haster,<sup>1</sup> V. Kalogera,<sup>5</sup> T. Littenberg,<sup>5</sup> I. Mandel,<sup>1</sup> R. O'Shaughnessy,<sup>12,13</sup> M. Pitkin,<sup>14</sup> C. Rodriguez,<sup>5</sup> C. Röver,<sup>15,16</sup> T. Sidery,<sup>1</sup> R. Smith,<sup>3</sup> M. Van Der Sluys,<sup>17</sup> A. Vecchio,<sup>7</sup> W. Vousden,<sup>1</sup> and L. Wade<sup>12</sup>

Publications of the Astronomical Society of the Pacific, 131:024503 (16pp), 2019 February © 2019. The Astronomical Society of the Pacific, All rights reserved. Printed in the U.S.A.



#### PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals

C. M. Biwer<sup>1,2</sup>, Collin D. Capano<sup>3</sup>, Soumi De<sup>2</sup>, Miriam Cabero<sup>3</sup>, Duncan A. Brown<sup>2</sup>, Alexander H. Nitz<sup>3</sup>, and V. Raymond<sup>4,5</sup>

Rapid and accurate parameter inference for coalescing, precessing compact binaries

J. Lange,<sup>1</sup> R. O'Shaughnessy,<sup>1</sup> and M. Rizzo<sup>1</sup> <sup>1</sup>Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, New York 14623, USA

- Current parameter estimation techniques for compact binary coalesce signals rely on Bayesian analysis (posteriors + evidence).
- Computationally costly!
- Need to dramatically speed up the process!
- How can machine learning help?

#### RAPID INFERENCE OF SOURCE PARAMETERS

THE ASTROPHYSICAL JOURNAL, 896:54 (10pp), 2020 June 10 © 2020. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/ab8dbe

#### A Machine Learning-based Source Property Inference for Compact Binary Mergers

Deep Chatterjee<sup>1</sup>, Shaon Ghosh<sup>1,2</sup>, Patrick R. Brady<sup>1</sup>, Shasvath J. Kapadia<sup>1,3</sup>, Andrew L. Miller<sup>4</sup>, Samaya Nissanke<sup>5</sup>, and Francesco Pannarale<sup>6,7</sup>, <sup>1</sup> Department of Physics, University of Wisconsin–Milwaukee, Milvaukee, WI 53211, USA <sup>2</sup> Department of Physics and Abstronomy. Montclair Stute University, 1 Normal Avenue, Montclair, NJ 07043, USA <sup>3</sup> International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India <sup>4</sup> Centre for Cosmology, Particle Physics and Phenomenology (Catholingue de Louvain, Chemin du Cyclotron, 2 B-1348 Louvain-la-Neuve, Belgium <sup>5</sup> GRAPPA, Anton Pannekoek Institute of Astronomy and Institute of High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, <sup>6</sup> Dipartimento dj Fisica, Università di Roma "Sapienza," Piazzale A. Moro 5, 1-00185 Roma, Italy INFN Sezione di Roma, Piazzale A. Moro 5, 1-00185 Roma, Italy *Received 2019 October 31; revised 2020 April 24; accepted 2020 April 25; published 2020 Lune 12* 



| O3 event | p(HasNS) | p(HasRemn<br>ant) |
|----------|----------|-------------------|
| GW190425 | 0.999    | 0.9959            |
| GW190426 | 0.9676   | 0.0029            |
| GW190421 | 0.0057   | 0.0012            |
| GW190915 | 0.0057   | 0.0012            |
| GW200115 | 0.967    | 0.0029            |
| GW20012  | 0.0057   | 0.0012            |

- Classifiers (Kneighbors, genetic, random forests) for HasNS and HasRemnant properties of sources in low-latency
- Train and test on LIGO-Virgo online MDC
- Integrate in the LVK low-latency infrastructure and run in O4



#### PARAMETER ESTIMATION

PHYSICAL REVIEW D 102, 104057 (2020)

### Gravitational-wave parameter estimation with autoregressive neural network flows

Stephen R. Green<sup>(D)</sup>,<sup>1,\*</sup> Christine Simpson<sup>(D)</sup>,<sup>2,†</sup> and Jonathan Gair<sup>(D)</sup>,<sup>‡</sup>

- Autoregressive normalizing flows for rapid likelihood-free inference of binary black hole system parameters.
- Maps a multivariate standard normal distribution into the posterior distribution of system parameters.
- Performance comparable to Markov chain Monte Carlo.





### AN OUTDATED OVERVIEW

**IOP** Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 011002

https://doi.org/10.1088/2632-2153/abb93a





**TOPICAL REVIEW** 

OPEN ACCESS

RECEIVED

7 May 2020

REVISED 31 July 2020

#### ACCEPTED FOR PUBLICATION

16 September 2020

PUBLISHED

1 December 2020

### Enhancing gravitational-wave science with machine learning

Elena Cuoco<sup>1,2,3</sup>, Jade Powell<sup>4</sup>, Marco Cavaglià<sup>5</sup>, Kendall Ackley<sup>6,7</sup>, Michał Bejger<sup>8</sup>, Chayan Chatterjee<sup>7,9</sup>, Michael Coughlin<sup>10,11</sup>, Scott Coughlin<sup>12</sup>, Paul Easter<sup>6,7</sup>, Reed Essick<sup>13</sup>, Hunter Gabbard<sup>14</sup>, Timothy Gebhard<sup>15,16</sup>, Shaon Ghosh<sup>17</sup>, Leïla Haegel<sup>18</sup>, Alberto Iess<sup>19,20</sup>, David Keitel<sup>21</sup>, Zsuzsa Márka<sup>22</sup>, Szabolcs Márka<sup>23</sup>, Filip Morawski<sup>8</sup>, Tri Nguyen<sup>24</sup>, Rich Ormiston<sup>25</sup>, Michael Pürrer<sup>26</sup>, Massimiliano Razzano<sup>3,27</sup>, Kai Staats<sup>12</sup>, Gabriele Vajente<sup>10</sup> and Daniel Williams<sup>14</sup>

- <sup>1</sup> European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy.
- <sup>2</sup> Scuola Normale Superiore (SNS), Piazza dei Cavalieri, 7 56126 Pisa, Italy.
- <sup>3</sup> Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, I-56127, Italy.

ELENA CUOCO, EGO

#### G2NET



| ≡  | kaggle       | Q Search                                                                       |                              | Sign In                               | Register                |
|----|--------------|--------------------------------------------------------------------------------|------------------------------|---------------------------------------|-------------------------|
| +  | Create       | EUROPEAN GRAVITATIONAL OBSERVATORY - EGO · RESEARCH PREDICTION COMP            | ETITION · 3 YEARS AG         | o Late Sub                            | omission                |
| Ø  | Home         | C2Net Crevitetianel Weye                                                       |                              |                                       |                         |
| Φ  | Competitions | G2Net Gravitational wave                                                       |                              |                                       |                         |
|    | Datasets     | Detection<br>Find gravitational wave signals from binary black hole collisions |                              |                                       |                         |
| ፠  | Models       |                                                                                |                              |                                       |                         |
| <> | Code         | Overview Data Code Models Discussion Leaderboard                               | Rules                        |                                       |                         |
|    | Discussions  |                                                                                |                              |                                       |                         |
| 6  | Learn        | Overview                                                                       |                              | Competiti<br>European G<br>Observator | on Host<br>ravitational |
| ~  | More         | <b>Start</b><br>Jun 30, 2021                                                   | <b>Close</b><br>Sep 30, 2021 | Prizes & A                            | wards                   |



| Q Search                                                                                                  | Sig                                                  | n In Register                                  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|
| G2Net Detecting Continu<br>Gravitational Waves<br>Help us detect long-lasting gravitational-wave signals! | ous                                                  | NG2NET                                         |
| Overview Data Code Models Discussion Lea                                                                  | derboard Rules                                       |                                                |
| Overview                                                                                                  | Cc<br>Eur<br>Ob                                      | ompetition Host<br>ropean Gravitational        |
| Start<br>Oct 4, 2022                                                                                      | Close<br>Jan 4, 2023 Pri<br>\$2<br>Marcar 8 Entry Aw | izes & Awards<br>5,000<br>ards Points & Medals |



Citizen scientists contribute to classify glitches Frequency [Hz]

More details in Zevin+17 <u>10.1088/1361-6382/aa5cea</u>

https://doi.org/10.1016/j.ins.2018.02.068





- Team: M. Razzano, F. Di Renzo, F. Fidecaro (@Unipi), G. Hemming, S. Katsanevas (@EGO)
- Launched @ Nov 2019 REINFORCE Project H2020-SWAFS (2019-2022)

ELENA CUOCO, EGO

#### WHAT'S NEXT?

Use of ML pipeline for ITF instrumental studies (from lock-loss to data cleaning)

ML pipeline in production: MLy-Pipeline (Emily), was added to the unmodelled burst searches as standalone machine learning GW detection pipeline

On-line parameter estimation for Fast alert system

Multi-messenger analysis through AI applications

#### THANK YOU

TWITTER: @ELENACUOCO ELENA.CUOCO@EGO-GW.IT

credits for the slides to: M. Cavaglià, F. Di Renzo, A. less, F. Morawski  ACKNOWLEDGEMENTS: this material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium.