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Models and Observations
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Lots of data is on the way…
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Signals and impasses

Daylan et al 2016
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FIG. 7: Intensity maps (in galactic coordinates) after subtracting the point source model and best-fit Galactic di↵use model,
Fermi bubbles, and isotropic templates. Template coe�cients are obtained from the fit including these three templates and
a � = 1.3 DM-like template. Masked pixels are indicated in black. All maps have been smoothed to a common PSF of 2
degrees for display, before masking (the corresponding masks have not been smoothed; they reflect the actual masks used in
the analysis). At energies between ⇠0.5-10 GeV (i.e. in the first three frames), the dark-matter-like emission is clearly visible
around the Galactic Center.

V. THE GALACTIC CENTER

In this section, we describe our analysis of the Fermi
data from the region of the Galactic Center, defined as
|b| < 5�, |l| < 5�. We make use of the same Pass 7 data
set, with Q2 cuts on CTBCORE, as described in the pre-
vious section. We performed a binned likelihood analysis
to this data set using the Fermi tool gtlike, dividing
the region into 200⇥200 spatial bins (each 0.05�⇥0.05�),
and 12 logarithmically-spaced energy bins between 0.316-

10.0 GeV. Included in the fit is a model for the Galac-
tic di↵use emission, supplemented by a model spatially
tracing the observed 20 cm emission [45], a model for
the isotropic gamma-ray background, and all gamma-ray
sources listed in the 2FGL catalog [46], as well as the
two additional point sources described in Ref. [47]. We
allow the flux and spectral shape of all high-significance
(
p
TS > 25) 2FGL sources located within 7� of the

Galactic Center to vary. For somewhat more distant or
lower significance sources ( = 7� � 8� and

p
TS > 25,

Fermi Galactic Center Excess

7

FIG. 6: Left frame: The spectrum of the dark matter component, extracted from a fit in our standard ROI (1� < |b| < 20�,
|l| < 20�) for a template corresponding to a generalized NFW halo profile with an inner slope of � = 1.18 (normalized to the
flux at an angle of 5� from the Galactic Center). Shown for comparison (solid line) is the spectrum predicted from a 43.0 GeV
dark matter particle annihilating to bb̄ with a cross section of �v = 2.25⇥10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]

2. Right frame:
as left frame, but for a full-sky ROI (|b| > 1�), with � = 1.28; shown for comparison (solid line) is the spectrum predicted from
a 36.6 GeV dark matter particle annihilating to bb̄ with a cross section of �v = 0.75⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]

2.

of the Galactic plane; masking the region with |b| < 2�

changes the preferred value to � = 1.25 in our default
ROI, and � = 1.29 over the whole sky. In contrast to
Ref. [8], we find no significant di↵erence in the slope pre-
ferred by the fit over the standard ROI, and by a fit only
over the southern half (b < 0) of the ROI (we also find
no significant di↵erence between the fit over the full sky
and the southern half of the full sky). This can be seen
directly from Fig. 5, where the full-sky and southern-
sky fits for the same level of masking are found to favor
quite similar values of � (the southern sky distribution
is broader than that for the full sky simply due to the
di↵erence in the number of photons). The best-fit values
for gamma, from fits in the southern half of the standard
ROI and the southern half of the full sky, are 1.13 and
1.26 respectively.

In Fig. 6, we show the spectrum of the emission cor-
related with the dark matter template in the default
ROI and full-sky analysis, for their respective best-fit
values of � = 1.18 and 1.28.6 We restrict to energies
50 GeV and lower to ensure numerical stability of the
fit in the smaller ROI. While no significant emission is
absorbed by this template at energies above ⇠10 GeV,
a bright and robust component is present at lower en-
ergies, peaking near ⇠1-3 GeV. Relative to the analy-
sis of Ref. [8] (which used an incorrectly smoothed dif-
fuse model), our spectrum is in both cases significantly
harder at energies below 1 GeV, rendering it more con-

6 A comparison between the two ROIs with � held constant is
presented in Appendix A.

sistent with that extracted at higher latitudes (see Ap-
pendix A).7 Shown for comparison (as a solid line) is the
spectrum predicted from (left panel) a 43.0 GeV dark
matter particle annihilating to bb̄ with a cross section
of �v = 2.25 ⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2,
and (right panel) a 36.6 GeV dark matter particle anni-
hilating to bb̄ with a cross section of �v = 0.75 ⇥ 10�26

cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2. The spectra extracted
for this component are in moderately good agreement
with the predictions of the dark matter models, yielding
fits of �2 = 44 and 64 over the 22 error bars between 0.3
and 50 GeV. We emphasize that these uncertainties (and
the resulting �2 values) are purely statistical, and there
are significant systematic uncertainties which are not ac-
counted for here (see the discussion in the appendices).
We also note that the spectral shape of the dark matter
template is quite robust to variations in �, within the
range where good fits are obtained (see Appendix A).

In Fig. 7, we plot the maps of the gamma-ray sky
in four energy ranges after subtracting the best-fit dif-
fuse model, Fermi Bubbles, and isotropic templates. In
the 0.5-1 GeV, 1-3 GeV, and 3-10 GeV maps, the dark-
matter-like emission is clearly visible in the region sur-
rounding the Galactic Center. Much less central emission
is visible at 10-50 GeV, where the dark matter compo-
nent is absent, or at least significantly less bright.

7 An earlier version of this work found this improvement only in
the presence of the CTBCORE cut; we now find this hardening
independent of the CTBCORE cut.

Annihilating dark matter? Millisecond pulsars?

Ability to make robust conclusions is often limited by by challenges in connecting theory to data

Diversity of dark matter halo shapes 2

FIG. 1: Left: SIDM fits (solid-colored) to the rotation curves of eight galaxies in the SPARC sample (colored dots with error bars), spanning
the full range of the diversity, compared with simulated analogs in a similar velocity range from NIHAO hydrodynamical CDM simulations
with strong feedback (gray) [29]. Right: Decomposed halo (dotted) and baryonic (dashed) contributions to the total rotation curves for the four
outliers, together with the simulated total rotation curves as shown in the left panel (gray).

fluctuating star formation and we label this as “strong feedback” given its impact on the dark matter distribution. In addition, we
compare the �2/d.o.f. distributions of the SIDM fits to those of the CDM fits based on the DC14 model [44], adapted from Katz
et al. [45]. The DC14 model is consistent with halo density profiles from NIHAO simulations [26, 29]. And the general trend for
the density profiles recovered in NIHAO simulations is similar to that in FIRE-2 simulations, hence our conclusions would apply
to both. We also consider models where the feedback is driven by spatially smoother star formation that does not lead to dark
matter cores [15, 30–32]. In these CDM simulations with “weak feedback”, the Navarro-Frenk-White (NFW) profile [46, 47]
provides a reasonable approximation for halo density profiles on dwarf scales [15]. Keeping this in mind, we also include fits
using the NFW profile from [45].

Our second aim is to compare the SIDM and CDM fits with the fits using the radial acceleration relation (RAR) [48]. This
empirical relation is based on the average over the SPARC sample in the plane of the total radial vs baryon accelerations [43].
We further propose an one-parameter SIDM model that has only one variable, i.e., the mass-to-light ratio, in fitting the data,
as in the case of the RAR. And we use it to highlight the importance of diverse dark matter distributions in explaining stellar
kinematics of spiral galaxies.

The plan for this paper is as follows. In Sec. II, we first provide a visual representation of the key issue that we will identify
for current CDM simulations with strong baryonic feedback. We use a small subset of galaxies from the SPARC sample to show
that the cuspiness of the dark matter halo is related to the compactness of the stellar distribution and illustrate the challenge for
the CDM simulations in reproducing this pattern.

In Sec. III, we discuss the inferred logarithmic slope of the dark matter density profile at 1.5% of the virial radius from
the SIDM fits and compare it with the predictions in NIHAO and FIRE-2 simulations. Our analysis indicates that the CDM
simulations with strong feedback do not create galaxies that are as cuspy as those predicted by SIDM. We show that the inferred
inner slope actually correlates with the stellar surface density in the sense that large cores are recovered within SIDM for low
surface brightness galaxies. In Sec. IV, we present the cumulative distributions of �2/d.o.f. values inferred from SIDM and
CDM fits and show the SIDM model is by far the best description of the data.

In Sec. V, we perform a new SIDM fit to the SPARC sample, but without including scatters in the priors. In this limit, the
SIDM model and the RAR have the same variable in the fits, i.e., the stellar mass-to-light ratio. We show even in this extreme
case the SIDM fits are better than the RAR fits and demonstrate that the one-parameter SIDM fits do not lead to one-to-one
correlation between the total radial and baryonic accelerations. We conclude in Sec. VI.

II. UNDERSTANDING THE CORE VS CUSP PROBLEM AND ITS CORRELATION WITH THE STELLAR DENSITY

Compared to CDM, the SIDM model has one additional parameter, the dark matter self-scattering cross section per mass
(�/m). The overall fits of the galaxy sample are not sensitive to a specific value of the cross section as long as �/m ⇠

O(1) cm2/g [37], so it is hard to use the rotation curve data to pin down �/m. For this range of the cross section, the SIDM
model predicts both cored and cuspy profiles, depending on baryon concentration. For galaxies with low baryon concentration,

New fundamental physics? Baryonic effects?

Kaplinghat et al 2018 
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Broad methodological directions*
*Not exclusive or 

exhaustive!

Simulation-based 
inference

Inference

Prediction

• Invert complex physical simulators 
• Directly work with high-dim data

zT ª N (0, I)

zt=0.8

zt=0.6

zt=0.4

zt=0.2

x ª p(x | ≠m, æ8)
Reverse process (emulation)

Forward process (likeli
hood evaluation)

Diffusion kernel q (zt ∣ x)

Learnable denoising pφ (zt−1 ∣ zt, x)Generative 
modeling

• Encode complex physical distribution 
• Use end-to-end or as physical prior

Differentiable /
probabilistic 

programming

Lensing
simulator

Sample

Sample

Source variational
distribution

Variational inference

Lens variational distribution

Observed lensed
image x

Sampled lensed
images

MLP
Source-plane
coordinates

Neural field representation

∇θ x

• Flexible specification of model components 
• Enable high-dimensional optimization using 

gradient-based inference techniques



Outline

Simulation-based inference 
Inverting complex physical simulators

Generative modeling 
Capturing the distribution of complex data for emulation and inference

Differentiable and probabilistic programming 
Specifying models with autodiff capabilities and enabling flexible inference 
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Simulators are great for prediction tasks

z

Prediction x, z ∼ p(x, z ∣ θ)

θ x
Model 

parameters
Data 

realization

7

z

Inference p(x ∣ θ) = ∫ dz p(x, z ∣ θ)

But poorly suited for inference… Slide: Gilles Louppe
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Inference with summary statistics

Observations

Data is complex and high-

dimension

We’d like to use observations and models to their full complexity

We typically rely on simplified 

summaries like correlation functions

Summary
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Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8
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SBI in astro(particle) physics
https://github.com/smsharma/awesome-neural-sbi

~ 70% of applications in astro/cosmology!

SBI is well-suited to many 
problems in astro/cosmology

Problems in astro/cosmology are an 
opportunity to drive methodological 

developments in SBI

Simulation-
based inference

Astrophysics/
cosmology

Proliferation also driven by investment in tools: 
swyft, sbi See also https://simulation-based-inference.org/

https://github.com/smsharma/awesome-neural-sbi
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Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8

Distribution of dark matter

Cold dark matter (  ~ GeV)mDM Warm dark matter (  ~ keV)mDM

Microphysical models

Warm dark matter

Self-interacting dark matter

Fuzzy (wave-like) dark matter

V. Springel; Aquarius simulation

Astrophysical dark matter searches: microphysics from macrophysics
Signs of new physics can show up in the macroscopic distribution of matter



Siddharth Mishra-Sharma (MIT/IAIFI) | EuCAIFCon 2024 /3811

From matter distribution to observations

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8

V. Springel; Aquarius simulation

Dark matter distribution

Motions of gravitationally bound stars

Inferring shapes of DM clumps

Gravitational lensing of 
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Perturbations of 
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Inferring (mass) 
distribution of DM clumps

Alvey, Gerdes, Weniger [MNRAS 2023] 
Hermans et al [MNRAS 2021]
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Example: Learning the shape of the dark matter halos
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A challenging inverse problem

Traditional method: equilibrium dynamical modeling with low-order velocity moments (~summaries)
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The forward modeling approach

Dark matter density profile

Simulator: dynamical modeling
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Applications to realistic simulations

Be it therefore resolved 3

Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
simulation) belonging to the central galaxy or a satellite (within r⇤max; see Table 1). The top panels show galaxies simulated at “standard resolution” (250 M�),
while the bottom panels show “high resolution” simulations (30 M�). A length scale of 10 kpc is shown in each of the top panels; bottom panels are shown at
the same scale.

Mhalo(109 M�) rvir( kpc) Vmax (kms�1) M?(103 M�) r⇤max (kpc) R1/2 (pc) vrot/� gsoft (pc) DMsoft (pc) ncrit(cm�3)
Resolved Central Galaxies in Our High-Resolution (30 M�) Simulations (> 100 star particles in AHF-Identified Halo)

m10q30 7.7 51 34 5200 7.7 720 0.17 0.40 14 1000
m10q30 Sat 0.34 6.3 16 1.2 1.2 560 0.85 0.40 14 1000

m10v30 9.0 54 30 330 8.2 330 0.45 0.10 14 1e5
m10v30 B 3.2 37 24 41 5.6 280 0.20 0.10 14 1e5
m10v30 C 1.1 26 16 2.9 3.9 540 0.39 0.10 14 1e5
m10v30 D 0.75 24 16 3.7 4.8 860 0.37 0.10 14 1e5

m10v30 Sat 0.52 20 13 2.0 2.8 430 0.29 0.10 14 1e5
m10v30 F 0.44 20 12 1.9 2.5 560 0.66 0.10 14 1e5
m10v30 G 0.27 17 12 2.3 2.5 570 1.1 0.10 14 1e5

m0930 2.5 35 22 12 4.0 200 0.56 0.10 14 1e5
m0930 B 0.67 23 15 1.8 3.4 620 0.79 0.10 14 1e5

Resolved Central Galaxies in Our Standard-Resolution (250 M�) Simulations (> 100 star particles in AHF-Identified Halo)
m10q250 7.5 51 34 2700 7.7 550 0.19 1.0 29 1000
m10v250 8.4 53 30 300 8.0 310 0.31 1.0 29 1000

m10v250 B 2.7 37 24 66 5.5 350 0.14 1.0 29 1000
m09250 2.5 36 22 27 5.3 420 0.14 1.0 29 1000

Table 1. Properties of dwarfs in the suite. Each row lists a di↵erent resolved, central or satellite galaxy at z = 0. Columns give: (1) Mhalo: halo mass. (2)
Rvir: virial radius. (3) Vmax: maximum circular velocity. (4) M⇤: bound stellar mass after removal of satellites and contamination. (5) Rmax: radial extent of
stars (maximum radius of any bound star), as determined from visual inspection. (6) R1/2: mean projected (2D) half-stellar-mass radius. (7) vrot/�: Ratio of
the stellar velocity shear vrot to dispersion �. (8) gsoft: typical minimum gas gravitational+hydrodynamic force softening reached in star-forming gas (this is
adaptive). (9) DMsoft: dark matter force softening (held constant). (10) ncrit: minimum gas density required for star formation (in addition to self-shielding,
Jeans instability, and self-gravity).

c� 2018 RAS, MNRAS 000, 1–14

Wheeler et al [MNRAS 2019] 
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Intervening mass causes a deflection in 
light from a background source

Example: Gravitational lensing

NASA/ESA

Source
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Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8

Strong lensing: effect of subhalos

Subhalos causes percent-level shifts in strongly lensed images
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A challenging inference problem
Source

Complex background model High-dim signal latents Hierarchical structure
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Lens sample Mass function posterior

Analyzing an ensemble of gravitational lenses SM*, Brehmer*, et al [ApJ 2019]

Coogan et al [NeurIPS ML4PS 2020]: Targeted inference 
Wagner-Carena et al [ApJ 2023]: Inference using realistic background galaxies 
Wagner-Carena et al [2024]: Targeted population-level inference 
Coogan et al [2022]: Effect of perturber populations 

DM cuto� mass with TMNRE 11

Figure 9. Top: Approximate posteriors for the half-mode mass derived from 10 di�erent sets of 20 images. The dotted black line represents the true value of the
half mode mass with which we have generated the images (107

, 108
, 109

, 1010 M�). Middle: We show the approximate posterior resulting from the combination
of the " = 10 di�erent posteriors shown in the first column, as explained in the text (subsection 4.4). Bottom: Subhalo mass function constraints derived from
the cuto� mass posterior shown in the second column. The black solid line shows the CDM subhalo mass function according to Equation 9, whereas the black
dashed one shows the WDM subhalo mass function according to Equation 14, given the true cuto� mass shown in the label. The blue dashed line shows the
mean of the WDM subhalo mass function obtained by sampling 1000 samples from the cuto� mass posterior shown in the second panel and using this value in
Equation 14. We also show the central 68 and 95 percentiles as shaded bands. These plots show how uncertain the subhalo mass function is under the assumption
that it has the functional form in Equation 14 with parameters from Lovell (2020).

not have access to the ground truth against which to compare the
results. In Figure 11 we show the empirical versus nominal expected
coverage probabilities for the cuto� mass inference network. We can
see that the inference network for the half-mode mass has converged
with good expected coverage.

5 DISCUSSION

n this section, we discuss the improvements to the model and infer-
ence question which need to be addressed before we can safely apply
our pipeline to the analysis of real data.

First, we have neglected e�ects such as inadequate lens light sub-
traction and assumed the lens light to be known. Regarding the noise
model, we did not account for correlated pixel noise due to instru-
mental e�ects including the telescope’s PSF (e.g. see Wagner-Carena
et al. 2022).

In this work, we have employed an analytic parameterisation (the
Sérsic profile) as a lensed source light distribution model, which is
adequate to analyze low-resolution images. However, to accurately
model higher-fidelity lensing observations, such as those from on-
going (e.g. HST) and future (e.g. JWST, ELT, SKA) telescopes,
more complex source models need to be employed. Existing models,
in order of complexity, are regularised pixellation of the source plane
(see, e.g., Suyu et al. 2006; Karchev et al. 2021; Vegetti & Koopmans
2009a), source modelling through basis functions (e.g. shapelets
(Birrer & Amara 2018) or wavelets (Galan et al. 2021)) attached to
the source plane, and deep learning approaches (see, e.g., Adam et al.
2022; Morningstar et al. 2019). The ability to accurately and precisely
reconstruct the complex morphology of strong-lensing sources is of
the utmost importance, as to disentangle the source surface brightness
inhomogeneities from the percent-level fluctuations introduced by
substructures in the lens. We anticipate that using sources with more

MNRAS 000, 1–16 (2022)

Estimating warm dark matter mass

Anau Montel et al [MNRAS 2022]: Warm DM mass inference 
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Example: Weighing in on the Galactic Center Excess
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FIG. 1. A schematic overview of the inference framework used in this work. A normalizing flow is used to model posterior
distribution of the parameters of interest characterizing the contribution of point source populations as well as di↵use (“smooth”)
components to the �-ray data. The flow transformation from the base distribution to the posterior is conditioned on learned
summaries of the �-ray map extracted using a convolutional neural network. The normalizing flow and feature-extractor neural
networks are trained simultaneously using maps simulated from the forward model. Once trained, samples from the flow can
be generated conditioned on a new dataset of interest in order to obtain an estimate of the corresponding parameter posteriors,
which can be used to infer physical quantities of interest such as source-count distributions of modeled PS populations as well
as fluxes associated with the di↵use components. See Sec. II for a detailed description of the analysis pipeline.

A. Datasets and the forward model

Datasets and region of interest: We use the datasets
and spatial templates from Refs. [48, 49] to create sim-
ulated maps of Fermi -LAT data in the Galactic Cen-
ter region. The templates and data used correspond
to 413 weeks of Fermi -LAT Pass 8 data taken between
August 4, 2008 and July 7, 2016. The top quartile
of photons as graded by quality of PSF reconstruc-
tion in the energy range 2–20 GeV and event class
ULTRACLEANVETO are used. The conventional quality cuts
are applied: zenith angle less than 90�, LAT CONFIG==1,
and DATA QUAL==1.1 The maps are binned spatially
using the HEALPix [50] pixelization scheme with reso-
lution parameter nside=128, roughly corresponding to
pixel area ⇠ 0.5 deg2. This dataset has been previously
used in the literature for analyses based on explicit like-

1 https://fermi.gsfc.nasa.gov/ssc/data/analysis/
documentation/Cicerone/Cicerone_Data_Exploration/Data_
preparation.html

lihoods [32–34] as well as machine learning-based anal-
yses [41] for characterizing the GCE. All templates are
normalized, per-pixel, within a region defined by r < 30�.

The inner region of the Galactic plane, where the
observed emission is especially di�cult to model, is
masked at |b| < 2�, and a radial cut r < 25� defines the
region of interest (ROI) for our analysis. Even though
the GCE is spatially confined to the inner 10–15� of the
Galactic Center [10, 11], using a larger ROI improves the
ability to constrain other spatially extended templates
and helps mitigate spatial degeneracies that would
otherwise crop up in a smaller ROI. On the other hand,
using a ROI that is too large can exacerbate the e↵ects
of misspecified spatial templates [51]. We mask resolved
PSs from the 3FGL catalog [52] at a radius of 0.8�,
approximately corresponding to 99% PSF containment
for photons in the data type employed [52].

Di↵use emission forward model: The simulated
data maps are a combination of di↵use (alternatively
referred to as smooth or Poissonian) and PS contribu-
tions. The smooth contributions include (i) the Galactic
di↵use foreground emission, (ii) spatially isotropic emis-

SM, Cranmer [PRD 2022]

SBI pipeline for characterizing Excess signal including pulsar contribution
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Recent trends and challenges: Sequential methods
Specialize to particular data at the cost of amortization

4 Wagner-Carena et al.

Fig. 1.—: A schematic diagram comparing our two inference methods: neural posterior estimation (NPE, Section 3.1)
and sequential neural posterior estimation (SNPE, Section 3.2). Filled orange arrows with green outlines represent
shared steps between NPE and SNPE. Green arrows are steps unique to SNPE. The i index in the figure represents
the ith iteration of sequential inference. In this figure, g represents our stochastic simulator, q� is a conditional density
estimator with parameters �, and L is the loss function. The distributions p(✓|⌦) represent the prior on our parameters
✓ given the hyperparameters ⌦, and p(✓|x,⌦) represents posterior on our parameters given an observation x. For more
details, see Section 3.

galaxy spectra, the k-correction is calculated assuming a
flat spectral wavelength density. We also correct the o↵-
set in the zeropoint between the COSMOS observations
and our target detector. The COSMOS galaxies were
measured using the HST Advanced Camera for Surveys
(ACS) with the F814W filter (Ryon 2021). For our cat-
alog, we assume a fixed AB zeropoint of 25.95, which is
the average ACS zeropoint during the COSMOS survey
(Koekemoer et al. 2007; Mandelbaum et al. 2014; Ryon
2021). Finally, we allow a multiplicative correction to
the amplitude, given by asource.

2.4. Line-Of-Sight Halos

In Wagner-Carena et al. (2023), the line-of-sight halos
were included in the lensing simulations. Currently, the
implementation of line-of-sight halos in paltax does not
correct for the mean expected convergence. This would
result in sightlines whose matter density is systematically
higher than the universe’s average (Birrer et al. 2017b).
For now, rather than introduce this bias to our simula-
tions, we have elected to exclude the line-of-sight halo
population. We hope to add this feature and thereby
include line-of-sight halos in future work. Note that, in
Wagner-Carena et al. (2023), it was shown that shift-
ing the distribution of line-of-sight halos did not induce
a detectable bias in the inferred subhalo mass function
normalization.

2.5. Observational E↵ects

Our simulations include observational e↵ects to emu-
late the HST Wide Field Camera 3 (WFC3) UVIS chan-
nel with the F814W filter. This includes a pixel size
of 0.40 arcsec/pixel (Gennaro 2018, section 1.1), a read
noise of 3e�(Gennaro 2018, section 5.1.2), an AB mag-
nitude zeropoint of 25.127 (Calamida et al. 2021), and

a sky brightness11 of 21.83 magnitude/arcsec2. For the
point spread function (PSF), we assume a simple Gaus-
sian PSF with a full width at half maximum of 0.0400.
Unlike in Wagner-Carena et al. (2023), we do not assume
our images have gone through HST’s drizzling pipeline,
and therefore we keep the native pixel scale of 0.0400 for
our final images.

2.6. paltax Implementation

The main performance improvements of our simula-
tion package over previous work come from the imple-
mentation of the full simulation pipeline in jax. This
includes an implementation of a code for basic cosmolog-
ical and large-scale-structure calculations, a ray-tracing
code for the gravitational lensing calculations, a code
that implements the observational e↵ects from the tele-
scope, and a code that samples the underlying lensing
configuration to be simulated. The exact implementa-
tion details can be found in the github repository12. The
functionalities contained in paltax were previously di-
vided among three packages: paltas13 (Wagner-Carena
et al. 2023), lenstronomy14 (Birrer & Amara 2018; Bir-
rer et al. 2021), and colossus15 (Diemer 2018). With
all the functionality under one package, we can leverage
jax to seamlessly compile and vectorize the full simula-
tion code. Note that the paltax repository also includes
a robust test suite, including direct comparison to the re-
sults of paltas, lenstronomy, and colossus.
The timing improvement provided by our package is

summarized in Table 1. In Appendix A, we outline some

11 Calculated using https : / / etc . stsci . edu / etc / input /

wfc3uvis/imaging/.
12

https://github.com/swagnercarena/paltax

13
https://github.com/swagnercarena/paltas

14
https://github.com/lenstronomy/lenstronomy

15
https://bitbucket.org/bdiemer/colossus

10 Wagner-Carena et al.

Fig. 5.—: A comparison of the mean loss on ⌃sub on 30 mock observations for two di↵erent methodologies: the fiducial,
NPE approach (orange) and the sequential, SNPE approach (green). The dashed black line shows a power-law fit to
the fiducial results using the loss for > 2⇥ 107 images seen. The gray region bounds the sequential loss produced by
the final proposal distribution. The jumps in sequential performance correspond to the transition between proposal
distributions.

saturated the information it can extract from our strong
lensing data. In theory, our new simulation pipeline al-
lows us to access an infinite training set and continue to
move down the loss curve. However, the improvements
in loss scale logarithmically with the number of images
seen. Substantially improving the performance of our
fiducial model would require an order of magnitude more
computing resources.

5. RESULTS: SEQUENTIAL INFERENCE

The results of Section 4 suggest that our primary mod-
eling limitation is our training set. In this section, we
leverage SNPE to steer our proposal distribution to-
wards more informative samples with the hopes of im-
proving on the scaling seen in Figure 4. To test the
SNPE approach, we create a new set of 30 test images.
To distinguish these from the images used in Section 4,
we will label these our mock observations. The lensing
parameters for the mock observations are drawn from
the same distribution as our training set, with two ex-
ceptions. As with our previous test set, the source im-
ages are drawn from a held-out set of 99 COSMOS im-
ages. The distribution of SHMF normalizations has also
been changed to approximately match a suite of high-
resolution dark-matter-only (DMO) simulations (Nadler
et al. 2023). This results in a shift in the mean normal-
ization, ⌃sub,pop from 2⇥10�3kpc�2 ! 1.5⇥10�3kpc�2

and a change in the population scatter, ⌃sub,pop,�, from
1.1⇥10�3kpc�2 ! 2⇥10�4kpc�2. This choice was made
to quantify our constraining power on lenses that match
our current theoretical expectations.

We run our sequential method on each of our 30 mock
observations. For each sequential run, our proposal dis-
tribution is updated every 10 epochs of training (156000
steps or roughly 5 million images). This means that
the fiducial, broad proposal distribution, p(✓|⌦0), is only
used for the first 10 epochs of training. We run a total of
40 epochs of sequential training, meaning that each se-
quential model has access to four proposal distributions.
The sequential training is stopped after 40 epochs be-
cause the models begin to overfit to the finite number
of COSMOS sources being used (see Appendix C for de-
tails). The sequential training uses the same ResNet 50
architecture as the fiducial model, but the cosine decay
is initialized to a base learning rate of 0.001 rather than
0.01. Finally, each new proposal distribution is set to be
equal to the current estimate from the model:

pj(✓|⌦i) = q�,i�1(✓|xj ,⌦0), (14)

where the j index corresponds to the specific observation
being considered by the sequential model and the i index
corresponds to the proposal / posterior from ith round of
sequential inference. For a discussion of other proposal
choices, see Appendix D.
The mean loss on ⌃sub on our 30 mock observations is

shown in Figure 5. The loss curve for the fiducial model
follows a similar behavior to the larger test set used in
Section 4. By construction, the sequential models fol-
low the same loss curve for the first 10 epochs. How-
ever, after a single epoch of training on the sequential
proposal (the 11th total epoch of training), the average
sequential loss is already better than 500 epochs of train-

Better 
performance

With fewer 
simulations

Non-
sequential

Sequential

Wagner-Carena et al [2024]



Siddharth Mishra-Sharma (MIT/IAIFI) | EuCAIFCon 2024 /3821

Recent trends and challenges: Hybrid methods
Inject domain knowledge where possible for better robustness and simulation-efficiency

2

FIG. 1. Schematic overview of this work. Large-scale statistics are modeled using classical perturbative techniques, whilst
small-scale summaries make use of simulation-based inference, trained on small sub-volume simulations, obviating the need to
run costly high-resolution simulations of the entire survey volume.

vant nuisance parameters), and x is the corresponding
data-vector generated from a simulator (such as an N -
body realization). Analysis usually proceeds by training
a conditional neural density estimator q� (with param-
eters �) to learn: (a) the likelihood model, p(x|✓), by
maximizing the conditional log-probability of the data
x conditioned on the parameters ✓ (known as a neural
likelihood estimator; NLE); or (b) the posterior itself,
p(✓|x), by maximizing the conditional log-probability of
the model parameters ✓ conditioned on the data x, over
the training data (known as a neural posterior estimator;
NPE).
When performing inference on a test observation x0

when using NPE, we can directly query the trained es-
timator q�⇤ to generate samples from the posterior, i.e
✓ ⇠ q�⇤(✓|x0). In NLE, we instead need to combine
the learnt likelihood model q�⇤(x|✓) with the prior p(✓),
then use Markov chain Monte Carlo (MCMC) algorithms
to generate samples from this posterior. NPE is often
preferred over NLE for two reasons: (1) often the dimen-
sionality of the posterior distribution is smaller than that
of the likelihood which can lead to asymptotically better
learning; (2) NPE does not require the additional step of
running MCMC. In the HySBI framework however, we
use NLE, since it enables us to combine the learnt neural
likelihood on small scales with the analytic likelihood on
large scales.

HYBRID SIMULATION-BASED INFERENCE

Consider the scenario in which the data-vector x can be
split into two components – large scales xL, and small
scales xS – such that x = {xL,xS}. Such a split is
natural for the power spectrum (where xL would comprise

measurements with wavenumbers below some transition
scale, i.e. {P (k) : k  k⇤}); however, we note that the
following discussion is applicable to any combination of
large- and small-scale statistics (e.g., power spectra on
large scales and wavelets on small scales). The data
likelihood can then be decomposed as the product of a
large-scale likelihood and the conditional likelihood of
small-scales given large-scales:

p(x|✓) = p(xL,xS |✓) = p(xL|✓)p(xS |xL,✓). (1)

In HySBI, we propose to use classical statistics such as
the power spectrum and bispectrum on large scales for
which the likelihood, p(xL|✓), can be modeled analytically
with perturbation theory [e.g., 8, 9, 19]. As such, only
the likelihood term on small scales, p(xS |xL,✓), needs to
be learnt with simulations.1 We stress that, in contrast
to global SBI approaches, this likelihood term depends
not only on the model parameters ✓ but also on the large
scale statistic xL.

As discussed above, the main advantage of learning only
the small-scale likelihood with simulations is that, in prin-
ciple, it can be done by simulating only a small fractional
volume at full fidelity instead of the whole simulation
box, creating a surrogate likelihood that mitigates the
increasing computational cost of scaling SBI to upcoming
cosmological surveys. For a su�ciently large sub-volume,
we still have enough modes on small scales that the as-
sociated sample variance is sub-dominant compared to
other errors such as data noise and stochasticity in train-
ing. However, two new issues arise: (1) to correctly learn

1 This di↵ers from previous hybrid approaches, such as Ref. [20, 21],
who use small-volume simulations to model the signal, but assume
a Gaussian likelihood; this fails for many higher-order statistics.

Model large / mildly non-linear scales with perturbation theory

Model small (non-linear) scales with SBI

Modi & Philcox [2024]

Also: Ivanov et al + SM [2024]
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Recent trends and challenges: Hierarchical models

x1 x2 x3 xN⋯

θν

Global nuisance parameters 
E.g., instrumental effects

θ

Parameters of interest 
Inference targets

zN
z3z1 z2

Local nuisance parameters 
Per-event structure

Events xi

Many problems in astroparticle physics have hierarchical structure

Particle collider 
data

Astrophysics 
data

Heinrich*, SM* et al [TMLR 2024] 

Slide: Philipp Windischhofer

Likelihood doesn’t factorize 
over events  

 Fully capitalizing on data 
requires hierarchical approach
→
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Collider and astro/cosmo — many commonalities!
AI bringing communities together! Common goals + transferable methods

Initial conditions Dark matter field Dark matter halos Galaxies Observations

Galaxy-halo 
connection

Halo-finding 
(clustering)

N-body / 
gravity

Theory

{Ωm, ΩΛ, σ8, ns,

As, H0, ∑ mν…}

Forward

Reverse

Cosmological structure formation simulation chain

1 Introduction

The defining goal of particle physics is to understand the fundamental nature of elementary
particles and their interactions. The outcome of a particle physics measurement is expressed
in terms of a quantum field theory Lagrangian and its parameters. The great experimental
strength of collider-based particle physics is the availability of a huge amount of data and
measurements in combination with a well-controlled environment. The theoretical and ex-
perimental poles are linked through precision simulations, starting from the Standard Model
or a hypothetical Lagrangian, generating particle-level events, and eventually simulating the
detector. The simulation chain realized by the standard LHC event generators [1–5] and illus-
trated in Fig. 1, should be based on first-principles physics rather than empiric modeling. For
these simulations precision and speed are essentially two sides of the same medal. A detailed
discussion of these traditional methods can be found in a parallel review, Ref. [6]. Adding
modern machine learning to the numerics toolbox has the potential to provide the simulations
needed for the LHC Run 3 and HL-LHC [7], as well as future energy frontier machines.

From a fundamental physics perspective there exist three distinctly different kinds of mea-
surements at the LHC. First, basic and purely experimental measurements should be as inde-
pendent of theory considerations and first-principle simulations as possible, to avoid expiration
dates. Their problem is that they provide no information about fundamental physics. These
basic measurements benefit from modern machine learning for instance in understanding the
data and calibrating the detectors. A second class of measurements is supplemented with a
fundamental theory interpretation framework. Examples are well-defined inclusive production
rates, like fiducial or total cross sections. They can be compared to predictions from pertur-
bative quantum field theory. When we expect to find agreement with the Standard Model,
modern machine learning can help us in using these measurements to extract parton densities
or improve our Monte Carlo simulations. A third kind of measurement reflects our goal to
further our understanding of fundamental physics by comparing data to predictions from per-
turbative or non-perturbative quantum field theory. We assume that interesting physics signals
hide in specific kinematic regions. Here, we can search for deviations between the Standard
Model predictions and experimental results, measure Standard Model parameters or higher-
dimensional Wilson coefficients, and aim for anomalies and eventually a proper discovery.
Such measurements of all possible features in the vast phase space of LHC collisions require
precision simulations, specifically theory-based event generators. We will show how all of
these aspects benefit significantly from the application of modern machine learning methods.

The challenges for event generators are, first of all, defined by the increase of the LHC
luminosity and the expected advances in experimental precision and reach. Going from the
Run 2 dataset of 139 fb�1 to the projected HL-LHC dataset of 4 ab�1 suggests that experimen-
tal uncertainties at and below the percent level will become standard and need to be matched
by theory predictions, to allow for any kind of precision measurement. The same increase in
rate will allow us to probe more and more exotic kinematic regions, with the hope of finding

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse

Figure 1: Illustration of the LHC simulation chain. The forward direction is discussed
in Secs. 2 and 3, while the inverse simulation is the topic of Sec. 4.

4

Collider simulation chain

Butter, Plehn et al [SciPost2023]
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Recent trends and challenges: Model misspecification

Using simulations to leverage more information can be a 
double-edged swords: Methods can be sensitive to aspects of 
the simulation that are mis-specified, which would otherwise be 
“washed over” when using summaries

+ methods towards better calibration, simulation 
efficiency, high-dim posteriors… 

See https://github.com/smsharma/awesome-neural-sbi!

• Methods to detect the {degree/source} of model mis-
specification  

• Methods to correct for model mis-specification

Model space

Observation

Transformed model space

Transformed 
observation

e.g., Huang et al [NeurIPS 2023], Gao et al [NeurIPS 2023]

https://github.com/smsharma/awesome-neural-sbi
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Simulation-based inference 
Inverting complex physical simulators

Generative modeling 
Capturing the distribution of complex data for emulation and inference

Differentiable and probabilistic programming 
Specifying models with autodiff capabilities and enabling flexible inference 
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Generative modeling

{x} ∼ p(x)

x

p(
x) pϑ(x)

Generative models are simulators of the data

Goal: learn a probability distribution  that is as close as 

possible to the true underlying data distribution 

pϑ(x)
p(x)

x ∼ pϑ(x)

log pϑ(x)

1. Sampling

2. Density estimation

Image generation 
(Midjourney v5)
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Generative modeling — capabilities 

Emulation

∼ p( ∣ )Cosmology
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DESI

Galaxy clustering: the 
statistical distribution of 
galaxies in the Universe

Example: galaxy clustering
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zT ª N (0, I)

zt=0.8

zt=0.6

zt=0.4

zt=0.2

x ª p(x | ≠m, æ8)
Reverse process (emulation)

Forward process (likeli
hood evaluation)

Diffusion kernel q (zt ∣ x)

Learnable denoising pφ (zt−1 ∣ zt, x)

Considering galaxies as a set, use a transformer to guide the diffusion process 
Quijote simulations (Villaescusa-Navarro et al, APJS 2020) 

SM*, Cuesta-Lazaro* 

 [ICML ML4Astro 2023 Spotlight]
Transformer-guided diffusion on galaxies
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Diffusion on galaxies

• Fast (~seconds) generation of galaxy 
fields

• Accurately captures cosmological 
dependence of generated field

SM*, Cuesta-Lazaro* 

 [ICML ML4Astro 2023 Spotlight]
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Parameter estimation
Construct differentiable likelihood  for posterior parameter inferencep(x ∣ θ)
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Inference

Correlation statistics 
Diffusion

SM*, Cuesta-Lazaro* 

 [ICML ML4Astro 2023 Spotlight]
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Simulation-based inference 
Inverting complex physical simulators

Generative modeling 
Capturing the distribution of complex datasets for emulation and inference

Differentiable and probabilistic programming 
Specifying models with autodiff capabilities and enabling flexible inference 
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Forward models / simulations

We have a access 
to a bunch of 
simulations

We can run new 
simulations

The simulations 
are fast ⚡

The simulations are 
differentiable

We can easily add 
our favorite new 
physics scenario

• Efficient gradient-based optimization 
• Inclusion of flexible models (sparse 

GPs, NNs, …) as part of pipeline
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Example: Flexible inference via differentiable lensing

Lensing
simulator

Sample

Sample

Source variational
distribution

Variational inference

Lens variational distribution

Observed lensed
image x

Sampled lensed
images

MLP
Source-plane
coordinates

Neural field representation

End-to-end gradient-based optimization using a 

differentiable, GPU-accelerated lensing simulator
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Simultaneously 
reconstruct posterior 

on lens model

Model complex part of the problem 
with a machine learning model

Likelihood-based 
analysis

SM, Yang [ICML ML4Astro 2022 Spotlight]

Chianese et al [MNRAS 2020]: Variational autoencoders 
Karchev et al [MNRAS 2023]: Variational Gaussian Processes 
Karchev et al [NeurIPS ML4PS 2022]: Diffusion models 
Legin et al [ApJ 2023]: Diffusion models

+ Differentiable  
lensing
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Complex source reconstruction

0 100 200 300 400
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Ground truth Reconstruction Lensed image

Lo
ss

SM, Yang [ICML ML4Astro 2022 Spotlight]

Probabilistic reconstruction of high-
resolution source galaxy + dark matter lens!
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Nuclear reactions active in the early hot Universe gradually shut off as 
temperature cools, freezing out the abundance of light elements

Measure this abundance in pristine gas clouds in early Universe, 
and compare to predictions — sensitive to MeV scale physics
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Example: Differentiable big-bang nucleosynthesis Giovanetti, Lisanti, Liu, SM, Ruderman [In prep]
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Example: Differentiable big-bang nucleosynthesis

LINX: Light Isotope Nucleosynthesis with JAX

• Predict BBN observables in  s without compromises 

• Fully differentiable  amenable to variational inference and 
gradient-based sampling 

• Easily extensible for new physics scenarios 

• Puts BBN on the same footing as CMB, and allows for 
principled combinations

𝒪(0.1)

→

3

BBN Net 100⌦bh
2

100⌦bh
2

Reference

Neff Neff

Reference

PRIMAT 2.191+0.022
�0.021 2.195 ± 0.021 – –

PRIMAT 2.171+0.056
�0.051 2.172 ± 0.055 2.93+0.30

�0.27 2.92 ± 0.28

NACREII 2.233+0.060
�0.056 2.231 ± 0.055 – –

NACREII 2.214+0.079
�0.073 2.212 ± 0.072 2.96+0.28

�0.30 2.93 ± 0.27

PArthENoPE 2.228+0.024
�0.023 2.236 ± 0.034 – –

PArthENoPE 2.209 ± 0.053 2.218 ± 0.064 2.93 ± 0.28 2.95 ± 0.28

TABLE I. Results of BBN analyses using LINX at 68% CL,
and comparison to similar analyses in [43], varying only ⌦bh

2

or both ⌦bh
2 and Ne↵ . For analyses using the PRIMAT or

NACREII reaction networks, the analysis performed in [43] is
equivalent to ours, and the results are in excellent agreement.
The analysis performed in [43] is not equivalent (see text),
and the agreement is worse in this case. Throughout, we use
the values of D/H and YP from [3] and [5], respectively, and
assume standard Ne↵ is 3.046 when it is not being sampled.

When we perform this analysis using LINX, we ob-
tain 100⌦bh2 = 2.231+0.035

�0.036 when holding Ne↵ fixed and

100⌦bh2 = 2.210+0.062
�0.059, Ne↵ = 2.93+0.30

�0.28 when allowing
both parameters to float. This is in better agreement
with [43]. Sampling all of the rates as described above,
then, can provide a substantively di↵erent result than
that obtained by incorporating a theoretical uncertainty
into the likelihood.

III. JOINT CMB+BBN ANALYSES

LINX can also be used in conjunction with a CMB code
to provide joint constraints on parameters of interest. We
use the Boltzmann code CLASS [29–32] for this section
of our analysis.

To run a joint analysis, we first compute the BBN like-
lihood (1) as described above for a single parameter com-
bination. We then use the same values of ⌦bh2, Ne↵ if it
is sampled, and YP(⌦bh2, Ne↵ ,~⌫BBN), as well as sampled
values for the other ⇤CDM parameters and CMB nui-
sance parameters if they are sampled, to calculate an ar-
ray of C`s using CLASS. The output of CLASS is used to
calculate a CMB likelihood—we use the published Plik
likelihoods [44] for the CMB likelihood. The joint fit is
performed by maximizing the joint likelihood constructed
from these individual likelihoods. A schematic of the
joint likelihood is included in Figure 2.

Throughout, we use the Plik TT+TE+EE likelihood,
which contains high-` multipoles, and the commander
lowT and simall lowE likelihoods at low-`, for our CMB
likelihood. We perform analyses with both the “lite”
version of the high-` likelihood, which has already been
marginalized over the CMB nuisance parameters, and full
version of the high-` likelihood, where the nuisance pa-
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FIG. 2. A schematic illustrating the joint likelihood used
for the CMB+BBN analyses. Note that each likelihood is
computed at the same values of the input parameters ⌦bh

2

and Ne↵ , and the output of the BBN solver is used as input
to the Boltzmann solver to ensure consistency.

rameters must be sampled with the other CMB parame-
ters. Where the lite likelihood is used, we set the Planck
absolute calibration APlanck to 1. (HL: state number of
parameters total)

A. ⌦bh
2

We begin by holding Ne↵ fixed and sampling the pos-
terior of ⌦bh2 using the procedure described above. Here
we use the lite CMB likelihoods, opting not to perform
our own marginalization over the CMB nuisance param-
eters. We find at 68%

100⌦bh
2 =

8
><

>:

2.221± 0.012 PRIMAT

2.233± 0.014 NACREII

2.231+0.013
�0.012 PArthENoPE.

(2)

We note a reduction in the sizes of the error bars in all
three analyses as compared to the BBN-only analyses,
which is most pronounced for the NACREII network.

A simplified version of this analysis, in which the CMB
posterior for ⌦bh2 is used as a prior in the BBN-only like-
lihood, is performed in [13], using the PRIMAT network.
When we perform this analysis using the Planck 2018 re-
sult of ⌦bh2 = 0.02236±0.00015 [25] as our prior, we find
a joint CMB and BBN result of 100⌦bh2 = 2.215± 0.011
(CG: note on nuisance parameters). This is roughly 0.5�
lower than the result of the joint analysis above. The
joint analysis we perform has the advantage of being in-
dependent of the selection of the ⌦bh2 prior; for example,
if we perform the same analysis using the Planck 2015
value of ⌦bh2 = 0.02225 ± 0.00016 [45], as was chosen
in [13], we find instead 100⌦bh2 = 2.208 ± 0.011. (HL:
reading this very quickly and kind of lost as to the point?)

See DISCO-DJ: DIfferentiable Simulations for COsmology 
— Done with JAX 
Hahn, List, Porqueres [2023]

Using differentiable CMB emulator: cosmopower 
Spurio Mancini et al [MNRAS 2022]

Giovanetti, Lisanti, Liu, SM, Ruderman [In prep]

The future is differentiable!

5

FIG. 3. 68% and 95% contours in the ⌦bh
2�Ne↵ plane, for three di↵erent reaction networks. In each figure, the black contours

represent the result for a BBN-only analysis, the red for a CMB-only analysis, and blue for the joint CMB-BBN analysis. Note
when we use the PRIMAT network the resulting value of Ne↵ in the joint analysis is pushed high.

FIG. 4. Evolution of parameter medians and error bars with
the inclusion of di↵erent datasets, varying both ⌦bh

2 and Ne↵

along with the other CMB model parameters. All available
nuisance parameters are varied in each analysis.
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Conclusions

Simulation-based 
inference

Inference

Prediction

• Invert complex physical simulators 
• Directly work with high-dim data

zT ª N (0, I)

zt=0.8

zt=0.6

zt=0.4

zt=0.2

x ª p(x | ≠m, æ8)
Reverse process (emulation)

Forward process (likeli
hood evaluation)

Diffusion kernel q (zt ∣ x)

Learnable denoising pφ (zt−1 ∣ zt, x)Generative 
modeling

• Encode complex physical distribution 
• Uses end-to-end or as physical priors 
• Compute data-sim compatibility

Differentiable /
probabilistic 

programming

Lensing
simulator

Sample

Sample

Source variational
distribution

Variational inference

Lens variational distribution

Observed lensed
image x

Sampled lensed
images

MLP
Source-plane
coordinates

Neural field representation

∇θ x

• Flexible specification of model components 
• Enable high-dimensional optimization using 

gradient-based inference techniques


