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Context: Long Range Plan

1 | EXECUTIVE SUMMARY

RECOMMENDATION 4

We recommend capitalizing on the unique ways in

which nuclear physics can advance discovery sci-
ence and applications for society by investing in ad-
ditional projects and new strategic opportunities.

Today’s investments enable tomorrow’s discov-
eries, with corresponding benefits to society. We
underscore the importance of innovative projects
and emerging technologies to extend discovery
science, which plays a unique role in supporting
national needs.

LRP is decadal US Community Driven prioritization activity
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Optimizing scientific discovery from rich experimen-
tal and computational data sets produced in nuclear
physics research requires utilizing Al and ML tech-
nologies. Support for a coordinated effort to inte-
grate Al/ML technologies into the nuclear physics
research programs will accelerate discoveries.

High-performance computing (HPC) has led to re-
markable scientific progress for nuclear physics,
enabled in part by collaboration with computational
scientists and applied mathematicians through the
DOE Scientific Discovery through Advanced Comput-
ing (SciDAC) and NSF Cyberinfrastructure for Sus-
tained Scientific Innovation programs. As we enter
the era of exascale computing, with increasing num-
bers of communities within nuclear physics poised
to take advantage of HPC, enhanced support will
maximize scientific progress.
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https://nuclearsciencefuture.org/

Nuclear Physics Al vision

Speeding-up the cycle of the scientific method
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NUCLEAR THEORY
e Correlations and predictions
e Estimations and causations

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING
BAYESIAN METHODS

Experimental Design

NUCLEAR EXPERIMENT
e Methods
e Tools

ACCELERATOR SCIENCE
AND OPERATIONS

NUCLEAR DATA

e Databases DISCOVERY
e Data Mining
e Visualization
APPLICATIONS
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Nuclear Physics: Select Experimental facilities

Speeding-up the cycle of the scientific method
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Al applications in NP

» Currently deployed ML applications
— Detector Operations
— Reconstruction
—Lessons (learned)

» Future ambitions
— Detector Design for the Electron-lon Collider
— Theory/experiment integration
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Detector Operations: Monitoring at Jefferson Lab

» Hydra: near real-time predictions of

detector issues —
) o 120262 Last Updated: 5.00 second(s) ago S HYDRA®
—Used in all Halls for monitoring il

— Requires human intervention to fix
problems.
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specific detector areas with issues.
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AIEC - Al for Experimental Controls @Epgg

Developed system that uses Al/ML to determine control settings that are

automatically applied during production data taking to stabilize gains of
dnft Chambers. Atmospheric pressure

Al trained on existing Gai .
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Detector Operations: Al Optimized Polarization
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Left: microwave frequency vs. time. Right: corresponding polarization
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« Thousands of tracks produced pro Pb-Pb
Collision (few Pbytes/run)

» How to identify a rarely produced signal among
all these tracks

» How to effectively suppress contamination from
wrongly-combined pairs ?

Option 1: "Standard” cut-based selection:

+ Compare distributions of signal and background in
each variable of interest

* Apply some set of rectangular cuts, usually per
momentum interval

Option 2: Shift toward multivariate techniques:

* Instead of tuning single cuts on individual variables, we
want to exploit correlations in feature space to distinguish
signal from background

« multidimensional cut space

J. Wilkinson, GSI-Darmstadt

Applications of Machine Learning in Heavy-lon Physics Experiments
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- How best to optimise this?



X

Move towards machine learning
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ALICE Simplify a multivariate problem down to a single, “probability-like” Jiik?\\m 7 Jiix\:&

parameter to cut on. \@/A/
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* Typical training sample: Monte Carlo enriched with desired sample,
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Future Ambitions: Electron lon Collider

ATl-Assisted Detector Design

The Al-assisted design embraces all the main steps of the sim/reco/analysis pipeline...

Benefits from rapid turnaround time
from simulations to analysis of
high-level reconstructed observables

The EIC SW stack offers multiple
features that facilitate Al-assisted
design (e.g., modularity of simulation,
reconstruction, analysis, easy access

i to design parameters, automated
\ checks, etc.)
Reconstructed

PhyS|cs Detector ‘
Events Simulation \ Features ) Leverages heterogeneous computing

—" Accurate S|mulat|ons of the passage of particles or /
radiation through matter

Provide a framework for an holistic optimization of the sub-detector system
A complex problem with (i) multiple design parameters, driven by (ii) multiple objectives
(e.g., detector response, physics-driven, costs) subject to (iii) constraints

Those at EIC can be the first large-scale experiments ever realized with the assistance of Al
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Lessons

« Data Science is about DATA

— Al/ML prompts different views of
much data at what precision should
be collected.

— Al/ML changes our view of what we
can accomplish with our data
» Operating Facilities typically have over-
constrained and static budgets
— Al/ML can have significant ‘ROI’
* It's a Journey to getting buy-in for Al/ML
in operations

—Even when the ML algorithms are
demonstrably solving a real problem
with integrity

— At the same time, success does
breed more success
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Computing Model Design: EPIC

workflow

ERSAP / CODA  conpoy JIRIAF
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The Al promise:

Al-empowered discovery

Accelerating understanding of complex theory

and data

Automated research workflows
Integration of multi-modal data
Discovery: data mining, visualization,
interpretable Al

Data preservation/future-proofing
Real-time experimental steering

New developments enabling high-impact Al
applications

Exascale computing

Large language models
Foundation Models
Generative Al/interpretable Al
Al-driven unbinned analysis
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Nuclear
Physics

scovey 3D IMaAging of the internal structure of protons

Critical Opportunity: Protons emerge from interactions between quarks and gluons, with the unique feature of
confinement making it impossible to observe quarks and gluons directy by any modern detector. With
experimental and theoretical progress, the nuclear physics community is poised, for the first time, to achieve real
time 3-dimensional imaging of internal structure of protons. To peer into the proton to see quarks and gluons
indirectly requires integration of experimental simulations and complex theoretical frameworks for processing
large scale data from high luminosity experiments (JLab & EIC) in an unprecedented time scale only accessible by
exascale computing. Scalable generative Al for real time analysis addresses fundamental challenges in nuclear
theory simulations and provides a robust uncertainty quantification that are necessary for 3-D imaging.

Expected Impacts:

*  Fast and Al empowered analysis tools to study the internal quantum structure of basic building blocks of
matter. Development of distributed learning in the era of Al and exascale computing for analyzing datasets
across DOE complex.

*  Solving the proton imaging problem will couple Al driven analysis in nuclear theory with high performance
computing to provide data analytic pipeline that will be broadly applicable to other areas of science. A
composable Al-driven framework will enable nuclear physicists to discover new physics insights that are not
accessible with current techniques.

*  The development of Al-driven data analytic ecosystem will make the US a leader in addressing the most
complex and challenging problems in fundamental science.

Required R&D:

*  Applied Math to derive algorithms to utilize generative Al for computational nuclear simulations and inverse
design problems in nuclear quantum theory including lattice QCD.

*  Experimental simulation and theory frameworks using differentiable programing paradigm.

* Distributed generative Al-based physics analysis workflows for exascale computing.

Timeline:

*  Near term: 1-3 years: Robust generative Al based inference algorithms. First integrated experimental and
theoretical imaging based physics analysis framework.

*  Mid term: 3-5 years: Scalable analysis framework for imaging the proton

* Long term: 5-10 years: First images of the proton.

Anl/Jlab
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density distribution
of quarks inside
protons from model
calculations
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Envisioning the future: Scientific Discovery

* Fertile time for considering new methodologies

* Frequent themes
— Faster time to solution
+ Real-Time analysis on streamed data
» Surrogate models

— Unfolding experimental data and other forms of
solving inverse problems

— Digital twins of physical systems
« Continual learning

Detector & Electronic\

EEEEEEEEEEEE

— Anomaly detection for rare events © ENERGY

— Unbinned or event-level data sets to expose STREAMLINE
richer correlations

— ‘Multi-modal’ data sets
» Different modes of one data source (LLM)
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Observations/Conclusions

» AlI/ML has demonstrated efficiencies in operations
— To improve time to solution
— To reduce human labor
— To improve/facilitate analysis

» Al/ML is a priority for Nuclear Physics as an important tool for discovery science

» The concerns are the same across the scientific domains:
— Affordability
— Robustness, reliability, interpretability
— Data Integrity
— Workforce
— Funding mechanisms
— Interplay with Big Tech (including security concerns)

 Are there opportunities for collaboration? Yes!
—The NP community is in an envisioning stage which is an ideal time to engage!
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Al applications in radiotherapy FAIR

lon beams E 5 ][
Al can predict anatomical deformations over
the treatment course
Enables treatment planning that is robust
with respect to these changes Aim of the treatment:
More streamlined adaptation possible Destroy cancer cells with radiation
but also

Lennart Volz .. . . .
Biophysics, GS| Maximize sparing of surrounding healthy tissue



Adaptation: breathing motion and

real-time adaptation

Motion Monitoring

Phase 0/10

Graeff, Phys Med 2014; Lis, ... Graeff, Front Oncol 2021,
Steinsberger, ..., Graeff, JROBP 2022
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