

CONTACT US

CONFERENCES

HOME

Machine Learning Applications for Particle Accelerators

Al for particle accelerators

Motivation

The CERN accelerator complex

The CERN accelerator complex Complexe des accélérateurs du CERN

LHC and non-LHC physics

Not only LHC physics! \rightarrow Many different beam types, production schemes,...

Screenshot from recent Chamonix CERN Accelerator Performance workshop Jan '24

Flexibility comes at a prize. Examples...

Summary talk CERN Injector and Experimental Facility Workshop (IEF) '21

2. Address reproducibility and availability

- Availability OK, under control of Groups. Reproducibility is critical concern with increasing flexibility and multi-destination operation
- Transmission problems and instability in beam delivery in many locations.
 "Need more time in 2022"→have to ensure this is there (add in schedule?) #A
- Addressing reproducibility relies on many factors including equipment, accelerator modelling and high-level controls approach

 \rightarrow Current **beam scheduling** has severe impact on resources needed to run accelerators and on efficiency

* Statistics: 20-100 clicks to change supercycle = 2-25 min; 40-60 times/24 h

Input from CERN Joint Accelerator Performance Workshop'22

 \rightarrow Hysteresis is severe limitation for efficiency and flexibility in most machines, current mitigation methods wasting energy

 $\ast~$ ~ 15 % of yearly cost of SPS fixed target cycle for "waste" cycles and quasi-degauss Cycle MD1

Future accelerators? Like FCC...

The **business-as-usual** solution: FCC just larger LHC

- ${\scriptstyle \odot}$ Brute force scale-up \rightarrow using helicopters to reduce intervention times, more people, more sites,...
- (Financially excluded, luckily)

Future accelerators? Like FCC...

The **business-as-usual** solution: FCC just larger LHC

- ${\ensuremath{\bullet}}$ Brute force scale-up \rightarrow using helicopters to reduce intervention times, more people, more sites,...
- (Financially excluded, luckily)

The *elegant* solution: FCC to be run like a space telescope.

- Reinvent exploitation paradigm: hierarchical autonomous systems
- Al is key technology
- Management's preferred option

Future accelerators? Like FCC...

The **business-as-usual** solution: FCC just larger LHC

- ${\ensuremath{\bullet}}$ Brute force scale-up \rightarrow using helicopters to reduce intervention times, more people, more sites,...
- (Financially excluded, luckily)

The *elegant* solution: FCC to be run like a space telescope.

- Reinvent exploitation paradigm: hierarchical autonomous systems
- Al is key technology
- Management's preferred option

Need to use the next 10 years as test bed to be ready with adequate design choices

What can AI do for accelerators?

The vision...

Autonomous accelerators

Key words: optimal control and optimisation, anomaly detection and preventive maintenance, differentiable simulations, virtual diagnostics,...

Optimised accelerator design

Key words: fast-executing simulations for optimisation algorithms, differentiable simulations,...

Generic AI for efficient research and development

Key words: Al assistants for code development, knowledge retrievable,...

Workshop series for ML for particle accelerators since 2018

Machine Learning Applications for Particle Accelerators

4TH MACHINE LEARNING APPLICATIONS FOR PARTICLE ACCELERATORS (2024), GYEONGJU, SOUTH KOREA. HOSTED BY PAL

3RD ICFA BEAM DYNAMICS MINI-WORKSHOP ON MACHINE LEARNING APPLICATIONS FOR PARTICLE ACCELERATORS (2022), CHICAGO, USA. HOSTED BY BNL.

2ND ICFA MINI-WORKSHOP ON MACHINE LEARNING FOR CHARGED PARTICLE ACCELERATORS (2019), VILLIGEN, SWITZERLAND. HOSTED BY PSI.

1ST MACHINE LEARNING APPLICATIONS FOR PARTICLE ACCELERATORS (2018), MENLO PARK, USA. HOSTED BY SLAC.

Workshop 2025 will be at CERN!

HOME CONFERENCES CONTACT US

Topics of ML workshop '24

We are pleased to announce the **4th ICFA Beam Dynamics Mini-Workshop on Machine Learning for Particle Accelerators** will be held in *Gyeongju, South Korea*. The goal of this workshop is to help build a world-wide community of researchers interested in applying machine learning techniques to particle accelerators.

The workshop will consist of six topics:

- 1. Analysis & Diagnostics
- 2. Anomaly Detection / Failure Prediction
- 3. Infrastructure / Deployment Workflows
- 4. Optimization & Control
- 5. Modeling Approaches
- 6. Lessons Learned

Tutorials:

- 1. Reinforcement Learning
- 2. Model Adaptation / Up-keep
- 3. Transformers for Timeseries Prediction

Talks will include both accelerator physicists and computer scientists. This workshop has the following goals:

- Collect and unify the community's understanding of the relevant state-of-the-art ML techniques.
- · Provide a simple tutorial of machine learning for accelerator physicists and engineers.
- Seed collaborations between laboratories, academia, and industry.

Please contact the organizers if you are interested in attending.

Accelerator ML community - Trends...

Focus shifting slowly from R&D only to AI at scale with full life cycle management.

 \rightarrow Infrastructure/Deployment Workflows (MLOps) one of the longest sessions at last workshop

- \rightarrow Discussion about standards: e.g. optimisation problem definition standards
- → Non-trivial life cycle management questions becoming important: "continual learning"
 - Full tutorial about it.

The big new theme: LLMs...PACuna, Logbook search, AI assistants in the control room

Progress on all fronts, will focus on **optimisation and control** in the next slides.

Bayesian Optimisation (BO)

Majority of talks in "optimisation and control" session about BO

Bayesian Optimisation (BO)

Majority of talks in "optimisation and control" session about BO

AI for particle accelerators, EuCAIF, V. Kain, 01-May-2024

Bayesian Optimisation (BO)

Majority of talks in "optimisation and control" session about BO

Impressive expertise in the community!

State-of-the-art BO:

Model-based priors for various applications

BO

- Multi-fidelity BO for laser plasma accelerators
- SafeOpt to include safety constraints faster convergence with ModSafeOpt
- Information-based Bayesian Optimisation with virtual objectives

• ...

Common tools and frameworks were key

AI for particle accelerators, EuCAIF, V. Kain, 01-May-2024

State-of-the-art BO with **BoTorch**

- GPU accelerated
- versatile
- fully integrated with PyTorch, GPyTorch

Example: BO with neural network mean priors

Including prior information through historical data not efficient with GPs.

 \rightarrow Modify p(A) in $p(A | B) \propto p(B | A)p(A)$

Instead of constant prior in $GP \rightarrow GP$ becomes model of model \rightarrow much more sample-efficient

Model of non-constant mean $\mu(\mathbf{x})$ from simulation, ANN of historical data, other GP,...

Example: BO with neural network mean priors

Example from ATLAS

- Argonne Tandem Linear Accelerator System for study of low-energy nuclear physics with heavy ions
- Optimise transmission to target: 5 DOF

* Trained ANN from previous 3k dataset of ${}^{14}N$ run and used it for optimising ${}^{16}O$ run

Courtesy T. Boltz et al, arXiv:2403.03225

Example: info-based BAX - virtual objectives

Example for emittance tuning

- BAX (Bayesian Algorithm eXecution): https://willieneis.github.io/bax-website/
- Minimum emittance important for many applications: e.g. determines brightness of Xrays in FELs
- Classical methods slow due to multi-point queries: quadrupole scans for emittance evaluation
 Courtesy S. Miskovich et al

 \rightarrow Virtual emittance scans on posterior samples of GP as input to acquisition function optimisation

 \rightarrow choose queries (settings) to maximise information and minimise emittance

Example: info-based BAX - virtual objectives

Example from noisy LCLS simulation @ SCLAC

Courtesy S. Miskovich et al

AI for particle accelerators, EuCAIF, V. Kain, 01-May-2024

Example: Continuous control with $\mathbf{BO} \rightarrow \mathbf{ABO}$

Controlling the $n \times 50$ Hz noise in the slow extracted spill to the North Area Experimental Hall at CERN SPS.

Modulate voltage of main quadrupoles at $n \times 50$ Hz to compensate.

Spill noise changes over time following the European grid.

 \rightarrow adaptive continuous control, Adaptive Bayesian Optimisation

Model objective function f as $f(\mathbf{x}, t)$. Spectral mixture kernel S for t and Matern for control parameters

Kernel: $k([t_1, \mathbf{x_1}], [t_2, \mathbf{x_2}]) = \theta_k \times S(t_1, t_2) \times M(\mathbf{x_1}, \mathbf{x_2})$

Differentiable simulation codes

Optimisation algorithms work best and are most sample-efficient with gradient information of the objective function.

Differentiable simulation codes

Optimisation algorithms work best and are most sample-efficient with gradient information of the objective function.

- A physics-informed prior can help **improve the performance** of **BO** by preventing over-exploitation.
- Cheetah's differentiability allows efficient acquisition function optimisation using gradient descent methods in modern BO packages like BoTorch.
- Has well-defined behaviour and **does not need data** to train like neural network priors.
- Can be used in **combination with gradient-based system identification** to overcome model inaccuracies.

If you have differentiable codes....

10.0

Example: generative phase-space reconstruction in 6D

These measurements are normally rarely done, too time consuming...

E.g. Spallation Neutron Source (SNS): 5×10^6 measurements over 36 h

Courtesy R. Roussel et al arXiv:2404.10853

 $k_1 (1/m^2)$

T.D.C.: off DIPOLE: off

T.D.C.: off DIPOLE: on

T.D.C.: on DIPOLE: off

TDC·OR

-10.0

-5.0

0.0

5.0

reconstruction.

Magnetic control of tokamak plasmas through deep reinforcement learning

Time-varying, non-linear, multi-variate control problem

https://doi.org/10.1038/s41586-021-04301-9

Learn dynamics (once and for all) through trial-and-error, no exploration after training!

RL setup for trajectory steering

Learn dynamics (once and for all) through trial-and-error, no exploration after training!

RL setup for trajectory steering

RL elegant (if not ideal) solution, but **online training** often not possible!

- Not sample-efficient enough
- Safety constraints
- \rightarrow RL (like MPC) needs to be built into accelerator design.

Learn dynamics (once and for all) through trial-and-error, no exploration after training!

RL elegant (if not ideal) solution, but **online training** often not possible!

- Not sample-efficient enough
- Safety constraints
- \rightarrow RL (like MPC) needs to be built into accelerator design.

Example: RL for $n \times 50$ Hz control at CERN SPS?

RL for $n \times 50$ Hz noise control?

Simulated environment:

$$\vec{s} = [A_{spill}, \phi_{spill}, A_{corr}, \phi_{corr}]$$

$$r = -\sqrt{A_{noise}^2 + A_{corr}^2 + 2A_{noise}A_{corr}\cos\Delta\phi}$$

Spill monitor signal (2kHz) for 1 s SHiP cycle

RL for $n \times 50$ Hz noise control?

Simulated environment:

Spill monitor signal (2kHz) for 1 s SHiP cycle

episodes

episodes

RL for $n \times 50$ Hz noise control?

Simulated environment:

Spill monitor signal (2kHz) for 1 s SHiP cycle

 \rightarrow Can we transfer? How does V_{QF} translate to A_{corr} ?

 \rightarrow Training on the machine takes too long. Also, how to change A_{noise} , ϕ_{noise} ?

RL @ CERN - a selection

PS

 Correct RF phase & voltage for uniform bunch splitting (LHC beams)

- Successful sim2real & fully operational
- > Multi-agent (SAC) & CNN for initial guess
- > Next: continuous controller (UCAP)

A. Lasheen, J. Wulff

PS to SPS

- Adjust fine delays of SPS injection kicker
- RL agent (PPO) trained on data-driven dynamics model
- Ready for sim2real test

M. Remta, F. Velotti

LINAC3 / LEIR

- PhD project (B. Rodriguez): control LINAC3 cavities for optimal injection efficiency into LEIR
- RL state based on VAE-encoded Schottky spectra
- Agent trained on data-driven dynamics model

Steer DC beams in TT20 TL using splitfoil secondary emission monitors

- Works well in simulations, with noise and varying emittances
- Ready for sim2real test

N. Bruchon, V. Kain

Courtesy M. Schenk

RL4AA - workshop

Pushing the frontiers of RL for accelerators \rightarrow autonomous accelerators.

Advanced RL concepts

How to deal with time-varying systems, partially observable systems (POMDP).

META-RL i.e. MAML

META-RL allows for few shot adaption

META-RL for accelerators

Tested algorithm on for AWAKE electron line steering at CERN.

Maximise proton polarisation @ RHIC \rightarrow towards EIC

Strategic and ambitious!

Numerous sub-projects: from improved modelling to fast and slow control and optimisation.

Main areas to optimise:

- Booster injection/capture
- AGS bunch splitting/merging scheme
- AGS spin resonance compensation

Efficient Particle Accelerators (EPA) project @ CERN

 \rightarrow automating accelerator exploitation

Approved in autumn 2023 after pre-study in Efficiency Think Tank (ETT)

9 work packages: ETT recommendations and controls infrastructure evolution.

Efficient Particle Accelerators (EPA) project @ CERN

Time bounded project (5 years): improvements ready for **HL-LHC (2029)**

EPA is preparing a new CERN **accelerator exploitation paradigm**

 \rightarrow blazing the trail for FCC

Main takeaways

Al is changing how we exploit particle accelerators and will enable new possibilities.

The ICFA ML workshop series created a global community for ML for particle accelerators

 $\bullet \rightarrow$ cross-fertilised and inspired labs.

Status: state-of-the-art AI in R&D and small scale operational installations

Next (hopefully): AI at scale - tackling infrastructure questions. From "works once" to "works always"

• Can only come with strategic ambitious projects! There are some now...