Experimental particle physics \& A

CLUSTER OF EXCELLENCE

 QUANTUM UNIVERSE
UH

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

PUNCH ons

者FSP CMS CENTER FOR DATA AND COMPUTING in natural sciences
 - NATURAL SCIENCES
\qquad

Experimental particle physics

Normal

Experimental particle physics

Goal:
Understand nature at the most fundamental level

Experimental particle physics

$100000000000000 \times$ Zoom

Goal:
Understand nature at the most fundamental level

Using some of the largest and most precise scientific instruments ever built

Experimental particle physics

Goal:
Understand nature at the most fundamental level

Using some of the largest and most precise scientific instruments ever built

Following the discovery of the Higgs boson in 2012

Experimental particle physics

Goal:
Understand nature at the most fundamental level

Using some of the largest and most precise scientific instruments ever built

Following the discovery of the Higgs boson in 2012

Much remains to do

Experimental particle physics

Goal:

Understand nature at the most fundamental level

Using some of the largest and most precise scientific instruments ever built

Following the discovery of the Higgs boson in 2012

Much remains to do
Where does Al enter?


```
\(\begin{aligned} \mathcal{Z} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\ & +i \neq D \psi+h . c\end{aligned}\)
    \(+x_{i} y_{i j} x_{j} \phi+h_{c}\)
    \(+\left|D_{m} \phi\right|^{2}-V(\phi)\)
```


6. Triggers

Experimental particle physics

Goal:
Understand nature at the most fundamental level

Using some of the largest and most precise scientific instruments ever built

Following the discovery of the Higgs boson in 2012

Much remains to do
Where does Al enter?
Everywhere.

Experimental particle physics

40k papers
Apologies - there will be some selection bias.

Understand nature at the most fundamental level

Using some of the largest and most precise scientific instruments ever built

Following the discovery of the Higgs boson in 2012

Much remains to do
Where does Al enter?
Everywhere.

1. Taggers

A jet is a
collimated shower of particles in the detector

We want to know which particle produced a jet

Why?

- Discover new particles
- Measure the Standard Model

Let's focus on top quarks (Modern taggers are multi-class)

How to build ML algorithms for complex, heterogenous data?

Data most naturally viewed as point cloud:

Each input (e.g. jet, event, ..) is a set of k -dimensional vectors (individual particles, hits, ..)

Landscape Dataset

- Open dataset for the development of better tagging algorithms for particle physics
- 2 million simulated examples
- Perfect class labels: top jet or light quark/gluon jet
- Input: momentum sorted list of 200 particles/jet with 3 features/particle ($\mathrm{px}, \mathrm{py}, \mathrm{pz}$)
G. Kasieczka (ed) ${ }^{1}$, T. Plehn (ed) ${ }^{2}$, A. Butter ${ }^{2}$, K. Cranmer ${ }^{3}$, D. Debnath ${ }^{4}$, B. M. Dillon ${ }^{5}$, M. Fairbairn ${ }^{\text {, D D. A. Faroughy }}$, W. Fedorko ${ }^{(}$C. Gay ${ }^{\text {, L. Gouskos }}{ }^{\circledR}$, J. F. Kameni ${ }^{\text {b, }}$,
P. T. Komiske ${ }^{10}$, S. Leiss ${ }^{1}$, A. Lister ${ }^{7}$, S. Macaluso ${ }^{3,4}$, E. M. Metodiev ${ }^{10}$, L. Moore ${ }^{11}$,
B. Nachman, ${ }^{12,13}$, K. Nordström ${ }^{14,15}$, J. Pearkes ${ }^{7}$, H. Qu ${ }^{8}$, Y. Rath ${ }^{16}$, M. Rieger ${ }^{16}$, D. Shih ${ }^{4}$
M. Thompson ${ }^{2}$, and S. Varma ${ }^{6}$

1 Institut für Experimentalphysik, Universität Hamburg, Germany

3 Center for Cosmology and Particle Physics and Center for Data Science, NYU, USA
4 NHECT, Dept. of Physics and Astronomy, Rutgers, The State University of NJ, USA 5 Jozef Stefan Institute, Ljubljana, Slovenia
6 Theoretical Particle Physics and Cosmology, King's College London, United Kingdom 7 Department of Physics and Astronomy, The University of British Columbia, Canada

8 Department of Physics, University of California, Santa Barbara, USA
9 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia 10 Center for Theoretical Physics, MIT, Cambridge, USA
11 CP3, Universitéxx Catholique de Louvain, Louvain-la-Neuve, Belgium
12 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, USA
13 Simons Inst. for the Theory of Computing, University of California, Berkeley, USA 14 National Institute for Subatomic Physics (NIKHEF), Amsterdam, Netherlands 15 LPTHE, CNRS \& Sorbonne Université, Paris, France
16 III. Physics Institute A, RWTH Aachen University, Germany
gregor.kasieczka@uni-hamburg.de plehn@uni-heidelberg.de

July 24, 2019

Abstract

Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.

Evaluation Metrics

Jets as Images

First deep learning approach: Convolutional networks: (project point-cloud onto 2D plane)
 Locality and translation invariance, but not ideal

$\begin{aligned} & \text { Inputs } \\ & 1 @ 40 \times 40 \end{aligned}$	Feature maps 8@39x39	Feature maps 8@38×38	Feature maps 8@18x18	Feature maps 8@17x1	Hidden units 64	Hidden units 64	Hidden units 64	Outputs 2
						${ }^{4} h_{h}$		4
	ion el		$\begin{aligned} & \text { no } \\ & \text { ion } \end{aligned}$ el		Flatten	Fully connected	Fully connected	Illy nnected

Learning relations

Learning relations

Learning relations

Attention learns which neighbours are relevant Benefits from pre-training

Lorentz Symmetries

Powerful physical constraint

Take aways

- Point clouds as powerful paradigm to represent data
- Additional structure in architecture boosts performance
- Over wide range: Best complexity/performance tradeoff by physics-informed models
- Overall highest performance reached via transfer learning

(Some) Current challenges

-

Foint clouds as powerful paradigm to represent data

- Additional structure in
architecture boosts performance
-

Over wide range: Best
complexity/performance tradeoff by physics-informed models

- Overall highest performance reached via transfer learning

- "Calibration": Domain adaptation between simulation and collider data
- Uncertainty aware training
- Interpretability

2. Reconstruction

Reconstruction

Reconstruction maps low-level detector read-outs

Particle Flow

| Event as input set |
| :---: | :---: | :---: |
| $X=\left\{x_{i}\right\}$ | | Event as graph |
| :---: |
| Graph building |

Particle flow is the task of turning trajectories and energy deposits in 3D space into meaningful particles

Graph-based approach can learn this mapping

Particle Flow

Particle flow is the task of turning trajectories and energy deposits in 3D space into meaningful particles

Graph-based approach can learn this mapping

And improve on classical Rule-based approaches

3. Simulation

Simulation is crucial to connect experimental data with theory predictions, but computationally very costly

Strategy

1. Use classical simulation or collider data as input

2. Train generative surrogate

3. Oversample

Main Targets

Pile-up Interactions

Main Targets

Fixed Grid

Fixed grid - i.e. 3D voxel images:
Pro: Standard generative models work
Con: Mostly empty, scales badly

How to do flows for high-dimensional data?
Split!

Point Cloud

Point cloud
Pro: Scales to arbitrary geometries Also pro: Requires additional developments

Use continuous time diffusion and consistency distillation: Better quality and faster

Hardware	Simulator	NFE	Batch Size	Time / Shower [ms]	Speed-up
CPU	Geant4			3914.80 ± 74.09	$\times 1$
	CaloClouds Calocionds II	$\begin{gathered} 100 \\ 2.5 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3146.71 \pm 31.66 \\ & 6.5168+421 \\ & \hline \end{aligned}$	$\begin{array}{r} \times 1.2 \\ \times 60 \\ \hline \end{array}$
	CaloClouds II (CM)	1	1	84.35 ± 0.22	$\times 46$
GPU	CaloClouds CaloClouds II CaloClouds II (CM)	$\begin{gathered} 100 \\ 25 \\ 1 \end{gathered}$	$\begin{aligned} & 64 \\ & 64 \\ & 64 \end{aligned}$	$\begin{gathered} 24.91 \pm 0.72 \\ 6.12 \pm 0.13 \\ 2.09 \pm 0.13 \end{gathered}$	$\begin{array}{r} \times 157 \\ \times 640 \\ \times 1873 \end{array}$

Buhmann, .., GK, et al 2309.05704; \& much more, see 2312.09597

Application

Not only theoretical development: e.g. ATLAS includes FastCaloGAN in ATLFAST3

100 networks (slices in η)

O(500) voxels

ATLAS
Simulation Preliminary $\mathrm{e}^{ \pm}, 0.80<|\eta|<0.85$

- Geant4
--- GAN
Epoch: 631000
$\chi^{2} /$ NDF $=7882 / 431=18.3$

Moving forward

- 3 Public datasets to compare simulation

Fast Calorimeter Simulation Challenge 2022

 techniques- Simplest: ATLAS dataset (see prev. page)
- Most complex: Future detector with 40k voxels
- Write-up currently ongoing

View on GitHub

Welcome to the home of the first-ever Fast Calorimeter Simulation Challenge!
The purpose of this challenge is to spur the development and benchmarking of fast and high-fidelity calorimeter shower generation using deep learning methods. Currently, generating calorimeter showers of interacting particles (electrons, photons, pions, ...) using GEANT4 is a major computational bottleneck at the LHC, and it is forecast to overwhelm the computing budget of the LHC experiments in the near future. Therefore there is an urgent need to develop GEANT4 emulators that are both fast (computationally lightweight) and accurate. The LHC collaborations have been developing fast simulation methods for some time, and the hope of this challenge is to directly compare new deep learning approaches on common benchmarks. It is expected that participants will make use of cutting-edge techniques in generative modeling with deep learning, e.g. GANs, VAEs and normalizing flows.
This challenge is modeled after two previous, highly successful data challenges in HEP - the top tagging community challenge and the LHC Olympics 2020 anomaly detection challenge.

(Some) Current challenges

Quality of generation

Complexity of samples
4. Unfolding

Unfolding

Observe

Synthetic data provides both views: How to use?

Unfolding

Detector-level

Particle-level

2 key approaches:

- Reweighting based on classifiers
- Morphing based on diffusion or generative models

Unfolding

Unfoldina

Detector-level

Particle-level

Example: Unfold Z+jets distributions in six dimensions

Unfolding

5. Anomaly Detection

CATHODE

GK, Nachmann, Shih et al 2101.08320; Hallin, .., GK et al 2109.00546; Many similar approaches - see e.g. Golling, GK et al 2307.11157 for an overview

Consider resonant anomalies: fully data-based construction of anomaly detection score

We don't assume the mass and type of the resonant particle

$$
\begin{array}{ll}
p_{\text {data }}(x \mid m \in S B) \\
=p_{\mathrm{bg}}(x \mid m \in S B) & p_{\text {data }}(x \mid m \in S R)
\end{array} \quad p_{\text {data }}(x \mid m \in S B), ~=p_{\mathrm{bg}}(x \mid m \in S B)
$$

CATHODE

CATHODE

CATHODE

CMS Physics Analysis Summary

Contact: cms-pag-conveners-exotica@cern.ch
2024/03/20

Model-agnostic search for dijet resonances with anomalous jet substructure in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$

The CMS Collaboration

Abstrac

This note introduces a model-agnostic search for new physics in the dijet final state. Other than the requirement of a narrow dijet resonance with a mass in the range of $1800-6000 \mathrm{GeV}$, minimal additional assumptions are placed on the signal hypothesis. Search regions are obtained by utilizing multivariate machine learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods - based on unsupervised, weakly-supervised and semi-supervised algorithms - are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of $138 \mathrm{fb}^{-1}$, recorded in the years 2016 to 2018 by the CMS experiment at the LHC, at a centre-of-mass energy of 13 TeV . No significant excesses above background expectation are seen, and exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass and jet substructure. Many of these signatures have not previously been searched for at the LHC, making the limits reported on the corresponding benchmark models the first ever and the most stringent to date.

- New result by the CMS collaboration: CMS Anomaly Search Effort (CASE)
- Full Run 2 dataset
- 6 anomaly detectors in parallel

CASE

CMS Physics Analysis Summary

Model-agnostic search for dijet resonances with anomalous jet substructure in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$

The CMS Collaboration

Abstract

This note introduces a model-agnostic search for new physics in the dijet final state. Other than the requirement of a narrow dijet resonance with a mass in the range of $1800-6000 \mathrm{GeV}$, minimal additional assumptions are placed on the signal hypothesis. Search regions are obtained by utilizing multivariate machine learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods - based on unsupervised, weakly-supervised and semi-supervised algorithms - are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of $138 \mathrm{fb}^{-1}$, recorded in the years 2016 to 2018 by the CMS experiment at the LHC, at a centre-of-mass energy of 13 TeV . No significant excesses above background expectation are seen, and exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass and jet substructure. Many of these signatures have not previously been searched for at the LHC, making the limits reported on the corresponding benchmark models the first ever and the most stringent to date.

- New result by the CMS collaboration: CMS Anomaly Search Effort (CASE)
- Full Run 2 dataset
- 6 anomaly detectors in parallel

Test expected
sensitivity gain via injected signals in simulation

CASE

- New result by the CMS collaboration: CMS Anomaly Search Effort (CASE)

CASE

- New result by the CMS collaboration: CMS Anomaly Search Effort (CASE)
- Full Run 2 dataset

- 6 anomaly detectors in parallel

For limits: inject potential signals
Includes uncertainties, e.g. multiprong jets modelling

Altogether set limits for 43 different signal scenarios

Other developments

More features per jet (e.g. 2309.13111)

Low-level input data (e.g. 2310.06897)
(e.g. 2404.07258, 2311.12924)

Better sensitivity for weak signals (e.g. 2312.11629)

Reduce shaping of distributions

More topologies
Anomalies as outliers (e.g. substantial literature on auto encoder based methods)

Robust statistical treatment beyond bump-hunts (e.g. 2111.13633)

Applications to data monitoring
6. Triggers

Trigger

Colliders with

40 million events/second

2 stage system (Trigger) reduces this to $\sim 1 \mathrm{kHz}$ for offline storage and analysis

Stage 1: Hardware based, using fieldprogrammable gate arrays (FGPAs) with microsecond latency

Improving selection criteria in trigger with Al yields

hls 4 ml

 better offline datahls 4 ml to translate ML architectures to hardware language

Example: Triggering Outliers

Learn-compression/decompression on signal free sample and use as anomaly score
Now testing in CMS Level 1 trigger

https://indico.cern.ch/event/1283970/ contributions/5554350/attachments/

2720710/4727877/axol1tl_fastml.pdf

Example: Online graph building

Online graph building for reconstruction in Belle 2 drift chamber

Explore different methods of constructing graphs for GNN processing

Within resource constraints

Differentiable versions of all steps in the particle physics processing chain

Differentiable versions of all steps in the particle physics processing chain

Either as ML-based surrogate models

Or via e.g. differentiable programming

Differentiable versions of all steps in the particle physics processing chain

Either as ML-based surrogate models

Or via e.g. differentiable programming

What can we do with this?
Heinrich, Kagan 2308.16680

7. Inference

Inference

Inference

Example

Reconstructing axion-like particles from beam dumps using cINN approach

More stable vs resolution than traditional approach
8. Experiment Design

Experiment Design

Automatically learn to arrange sensors given a physics target

Experiment Design

Al models are studied for all aspects of experimental particle physics

9. Foundation Models

Foundation models

UH

ifil Universität Hamburg
der forschunc I der lehre I der biloung

Modell (3)

GPT 3.5 Turbo GPT 4 Turbo

Konversation ©
口 Chat

Virtuelles Büro ©
a. Team

Lernraum ©

<> Wiss. Arbeiten
f Organisation

- Kreativität

Please list the top 9 topics for a talk on experimental particle physics and Al

Certainly! Combining experimental particle physics with artificial intelligence (AI) can be quite fascinating. Here are nine compelling topics that can be discussed or presented in a talk:

1. Al-driven Data Analysis: Discuss how Al and machine learning algorithms are used to process and analyze the massive amounts of data generated in particle physics experiments like those conducted at the Large Hadron Collider (LHC).
2. Pattern Recognition and Event Selection: Explore how neural networks and deep learning techniques help in identifying interesting events from background noise, such as distinguishing particle collision events from ordinary interactions.
3. Simulation and Modeling: Discuss the of Al in creating accurate simulations of particle interactions and detector responses, which are crucial for designing experiments and interpreting data.
4. Al in Detector Design and Optimization: Present the ways Al helps in optimizing the design and functionality of particle detectors to improve efficiency, resolution, and cost-effectiveness.
5. Real-time Data Processing: Explain how Al algorithms are employed for real-time data processing in particle physics experiments, allowing for instant data analysis and quick decision-making during live experiments.
6. Anomaly Detection and New Physics: Talk about the potential of Al to identify anomalies in data that could suggest the presence of new physical phenomena or particles not explained by current theories.
7. Improving Systematics and Uncertainties: Explore how AI can help in reducing systematic errors and improving the accuracy of measurements in experimental setups.
8. Automating Experimental Procedures: Discuss the automation of experimental processes and routine tasks in particle physics using AI, enhancing operational efficiency and reducing human error.
9. Future Prospects and Challenges: Conclude with a discussion on the future possibilities of integrating Al further into particle physics research and the ongoing challenges, including data privacy issues, the need for robust and interpretable Al models, and the integration of Al tools with existing technologies.

These topics cover a broad spectrum of how Al is revolutionizing experimental particle physics, making research more precise, efficient, and potentially leading to groundbreaking discoveries.

Foundation models for physics data

Already observed best performance in supervised classification by transfer learning

Foundation Model Workflow

Foundation models extend transfer more broadly and centralise and re-use training

OmniJet-a

Birk, Hallin, GK 2403.05618; Butter et al 2305.10475; Finke et al 2303.07364; Vigl et al 2401.13536; Heinrich et al 2401.13537; Mikuni, Nachman 2404.16091

Transformer backbone

Train on
 unsupervised generation

GPT for jets
using tokenised inputs

Evaluate for
supervised classification

Generalisation

Pre-training on "cheap" unlabelled examples improves supervised classification data efficiency up to 100-1000x

Very recent OmniLearn (Mikuni, Nachman) generalises across broad range of tasks including anomaly detection

Closing

Conclusions

Extremely broad range of application for Al in particle physics

Way beyond concept studies:
Modern tools are making a real impact in data analysis

Start to realise fully Al-based processing chains

Significant compute effort: Efficient models and sharing with foundation models matter

Thank you!

