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Part 1: The Present
* Symbolic ML for high energy theory

Part 2: The Future

* Can machines do theoretical physics?




0. The Past

Bjorn Karlsson, MidJourney January, 2024



Significance improvement es/\eg

Convolutional networks for facial recognition
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The Past: Collider Physics

Take some tool highly engineered for another puropose and shoehorn it into physics

Top Tagging (2008 — 2022)
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Lessons

Machine learning is extremely powerful
for characterizing numerical data

Lower level inputs work better

ML trades physical insight for performance
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1. The present

Bjorn Karlsson, MidJourney January, 2024



What do high-energy theorists actually do?

1. Most papers on hep-th and hep-ph are largely symbolic

e Calculate something

* Find/establish some relationship

* Solve some toy model

e Extract behavior of some theory in some limit

* |t’s starting to...
 MLis good at helping solve well-defined problems

2. What makes a question interesting?
* It connects to nature
* You can make progress on it
 Someone else thought it was interesting
e ltisrelated to something someone else thought was interesting

Not yet. But soon.

* Much harder problem




Most uses of ML in physics so far are data science
* Machine learning is great at characterizing numerical data
* Has led to revolutionary progress on a great variety of physical questions
* Much much more still to be done

How do we transition from data science to symbolic problems?
e Large Langauge Models show that ML good for symbolic problems
* Potential is there

* Alot of what physicists do is study examples, look for patterns, and generalize

* A place to start is with discrete symbolic data
* Find some theoretical physics problems where ML can help
e Get a feel for what it can (and currently cannot) do



1. Mathematics

Pure mathematics is almont entirely focused on symbolic problems

* Automated proof assistants are improving fast

é\z
! S8 Isabelle
[de Moura et al., 2015] X [Barras et al., 1997] g [Nipkow et al., 2002]

https://machine-learning-for-theorem-proving.github.io/ (NeurlIPS 2023)

* Progress in autoformalization: using LLMs to translate natural language
into formal mathematics (e.g. input to LEAN)

* FunSearch: use LLMs to write code to solve math problems
Article | Open access | Published: 14 December 2023

Mathematical discoveries from program search with
large language models

Bernardino Romera-Paredes &, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M. Pawan

 These tools haven’t seen much application in physics, but could soon...



2. Simplifying polylogarithms

An important and challenging step in the computation of Feynman diagrams is to
simplify polylogarithmic expressions

f(z) =9 (—Lis(w) — Li (_2:”\/3) ~ Lis (‘z- iig))

+4 (—Li3(x) + Liy (xiﬂ) + Lig(z + 1) — Lis(—2) In(z + 1))

Dersy, MDS, Zhang, 2206.04115]

—4 (Liz(a: +1)In(z+1) + é In®(z +1) + %ln(—:v) In?(z + 1))

1. What s its simplest form?
2. Does it simplify to zero?
3. What identities do we apply in what order to simplify it?

No classical algorithm for this problem
Easy to make more complicated expressions from simple ones by scrambling
* Like cooking an egg: easy to scramble, hard to unscramble

We generate symbolic data and then look for patterns to simplify



Simplifying polylogarithms

TWO mac h Ine I earnin g d p p roac h es Reflection EDE, Inversion EDE' Duplication EEE'

1. Reinforcement learnin g “TLip() - Tlip(1 —x) | Tt > TLip (%) ~TLip(x) > TLin(~x) — %Liz(xz)

Basic idea: I . | 6 -I
e apply known polylog identities like moves in a game A I
* train by learning to reverse scrambling steps S “ I
2. Transformer networks o
Dutch:

naamsveranderingsdocumentenbriefgeheel

e Used by I\afrge langauge models o (% i
 Learn to “guess” answer fw) = (‘ ly(2) - ‘3(_”\/5)‘ 13( Z-—J,\/g))
translate from complicated to simple +4<—Li3(z)+Lis (zil) + Lia(z + 1) — Lig(~2) 1n(m+1))

1

3 1 2
5 In*(z + 1) + 3 In(—z) In“(z + 1))

—4 (Li2(x+1)ln(x+1)+
translate
English: dossier
f(z) = —Liz(z°) — Lis(2?) + 4¢s
* Both methods work well (>80% success)
* Transformers do better: 91% success up to transcendental weight 4




3. Simplifying spinor-helicity amplitudes

[Cheung, Dersy, MDS, in perparation]

The same basic RL or transformer approach can be applied to many problems
* Need to be able to generate training data
* Have identities to apply

e.g: spinor helicity amplitudes

~ [23] [35] [46]*
((12)(15)(24)3(26)(35) (23] [26] [35] [56] + (12)(15)(24)2(26)(34)(35) [23] [35] [36] [56*
+ (14)(15)(23)(24)2(26)(35) [23] [35] [36] [56]% + (14)(15)(24)3(26)(35) [13] [23] [45] [56]
simplify this: — (14)(15)(24)3(26)(35) [13] [24] [35] [56] + (14)(15)(24)3(26)(35) [15] [23] [34] [56]
+ (14)(15)(24)3(26)(35) [23] [35] [46] [S6]* + (14)(24)3(26)(35)2 [23] [34] [35] [56]
+ (14)(24)3(26)(35)(45) [24] [34] [35] [56] — (14)(24)3(26)(35)(56) [24] [35] [36] [56]
+ (15)2(24)3(26)(35) [23] [35] [561°)

Possible “moves”:

Schouten identity Multiply by 1
(i) — (il)<kj) + (ik){jl) (P1p2)P3p4] . (P1P2)[P3p4] . .(ij) _
(ki) (kl) (P1P3) (pips) DK | GRGD
(k) ()
Momentum conservation Add O
OEEDY Qg,[;k] (mk) + [in] ~ (mk) + [In] + ( (i) - <’l<)k<l';J L Wz,)(gl))



Generate training data by scrambling

- —(34)2[12]” [34] [35] + (34)[12]" [13] [23] [45] - (34)2[12]" [14] [23] [35]
(23)(34)[13]” [34] [35] + (23)(45)[13]” [35] [45] — (23)(45)[13] [14] [35]

15] = 1410351 — [13][45]
[15] > o —(34y2[12]° [35] — (34)2[12]* [15] [23]

will learn
2
(34)*[12]" [25] Seouten to translate

(45)[15] - (34)[13])—

(24) > 0 < (23)(34)[13] [35] — (23)(45)[15] [35]

Momentum conservation

(34)2[12] [25]
(23)(24)[35]

Desired output

* Expressions can be very long: 50 terms or more
* Need new techniques for organizing transformer
* We use contrastive learning



Contrastive learning

Learn an embedding so that terms that are similar are close

* similar = appear in some identity
* close = metric on embedding space

learned mapping

1.0 1
> 0.8
2 distance inversely 10 b
& 0.6 . e
o correlated with number e
2 . oy N . % e % 4
20 .
- 0 of identities away o o AN o M i 3
< 2 . : s p o ! ~u gt ®  Mass dim: 4
< 0.2 1 é 0 . o .' * .: TS ©  Mass dim: 5
] vl e 3 Y Mass dim: 6
w N >, & ® Mass dim: 7
0.0 A P20 B <« ' ©  Mass dim: 8
S S ST T P
Number of identities away 40 - e W o
:gqé:
—10 -2 0 20 10 60

t-SNE dimension 1

* Learns dimensional analysis
e Learns other features as well



Example application

 Compute 5-point MHV amplitude with Feynman diagrams: 79 terms (1990 tokens)

(12)%(15)%(24)(34)[12] [14] [15] [23] [25] + (12)*(15)(23)(34)(45)[12] [15] [23] [25] [34]@

(15)2(23)(34)2<45)2[12] [15] [23] [45]

* Feed to network

contrast

after 55
iterations

(12)°

(15)(23)(34)(45)

 Outputis1term (27 tokens)

promising
pairs

———

> transformer
simplified form
of 2 terms




4. S-Matrix bootstrap

The S-matrix is the fundamental object of Quantum Field Theory

==

* Alotis known about it from pertubation theory (Feynman diagrams)
* Some things are known/conjectured about it non-perturbatively
e e.g. it should be unitary which implies the optical theorem

Optical theorem
Im(a|M[b) => " (a|MT|c)({c|M|b)
)

* Non-perturbative constraint
* Relates complex scattering amplitude M to real cross section c=MTM

Given cross section 0=|M|? can the phase of proof:
. . Tq—

M be uniquely determined? St =1
S=1+iM

STS=14+iM+iM+ MiM=1



Elastic scattering

Unitarity constraint simplifies in the “elastic regime”

* 4m2<s<9m?

* Only 2-particle states are relevant

e energy conserved, kinematics described by scattering angle z = cos 6

Write the amplitude as | M(2) = B(z)eifb(z)

Unitarity constraint ImM(z)=/dH|B|2

= B(z12)sin¢(z12) = ﬁ /dQ3B(213)B(z23) cos(p(213) — P(223))  zp= 22+ /1 224/1 — 22cosér

—T
f dzlf d¢1B(Z1 (zQW)—W)(Zz)
47 B(z)

= | sin¢g(z)=

For what B(z) does ¢(z) exist satisfying this equation?

For what B(z) is ¢(z) unigue or not-unique?



Can we find ¢(z) given B(z) with ML? ... Yes!

* Parametrize ¢(z) as a neural network

Neural Network Ansatz

@4

some known examples

\@Q

S
- s=4.5m? ¢(Z)
" sinu=0.88

6 1.5
1.0f
0.5§

0.0%

....................

-1.0

-0.5 0.0 0.5 1.0

Z =

B(z) or ¢(2)

[ Dersy, MDS, Zhiboedov, 2308.09451 ]

Loss function is unitarity condition

2
1 1 2r
B(z)sinqs(z)—aj dzlj dB(z)B(z,) cos ($(z1) — $(z)
-1 0
find ¢ given B using ML
2.5-\__//
-L_”/
031 __ B(2)
— ¢(2)
3.0 — B(2)
— ¢
excellent
agreement
S . with known
" o results

-0.25 0.00 0.25 0.50 0.75 1.00
z



When does a phase exist?

In 1967 Andre Martin proposed |gip ;; = max f dzlf "d¢1B(z1)B(22)
z 47I'B( )

as an indicator of phase determination

* Martin proved:
e |Ifsinu <1 foragiven B(z) then there always exists a phase ¢(z)

What is special about sinpu?

Contours of sin u Loss landscape from ML search for ¢

sinu value of B(z) = az + b

Normalized loss lanscape of B(z) =az+ b

bad solution

high sin

low sin [ good solution

(low loss)

* Loss landscape correlates with sin
* sin umeasures how hard these solutions are to find
 Don’t need exact solutions to learn this lesson



Can there be more than one ¢ given B?

Crichton (1966): yes
Atkinson (1977) found two phases ¢4(z) and ¢,(z) for the same B(z) with sinu > 2.15

Open question since 1977

Are there phase-ambiguous amplitudes with sinp < 2.157?

ML approach: two NNs for two phases ¢4(z) and ¢,(z)

S—— * Impose unitarity condition loss for each ¢:
d1(z) = 0" \ =E B(z)sin¢(z)—4—1”[1dzl J:”d¢lB(zl)B(22) cos (¢(zr) - $() 2
* Add repulsive loss to keep solutions apart
$a(2) = &%j@*@ Lr=E,||d(¢1(2), $2(2))]| " + E. ||d (7 — ¢1(2), $2(2))||”

Gradient descent in sin U leads to new phase-ambiguous cross sections

New lowest sinu

First new ( phase ambuity
phase-ambiguous

solution in £ sinp=1.67
50 years!

0.51 )/

z; trajectory
e Minimal sinu point

0.4
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Re z;



5. String theory

String theory is still trying to find the Standard Model among its infinite vacuua

Calabi proved metrics exist and are unique

* Not constructive: no non-trivial analytic
one approach: Calabi-Yau metrics are known!
Compactifyona  yses metric compute Ashmore, He, Ovrut arXiv:1910.08605

Calabi-Yau ma”'fc’ld/\Speitrum * use ML to find metrics numerically
— * Loss function is Ricci-flathess

\_/ o Halverson and Ruehle arXiv:2310.19870
* NNs to look for fixed points of metric flows

refine to find SM

dg;(x)
de

=-2 Ry(x),
Carifio et al arXiv:1707.00655

* Trained models to predict rank of gauge group in F-theory compactifications

e Patterns led to conjecture, which was then proven by humans

Recent review

. |
nature reviews physics

https://doi.org/10.1038/s42254-024-00709-0

Sergei Gukov®'?, James Halverson®** ' & Fabian Ruehle ® **°

April 2024




3. The future

Markus Graf, July, 2023



Large Language Models are the (immediate) future

Open Al 2020 ,"
1 5 175 billion g @
PT4 (0] Al GPT4
5 GPT-3 / ,' 170 tri?l(ie:n parameters
Pt e’
0] \ ¢
= 1012 ~ BERT “PalLM *
(] Google 2018 GPT3 b/,fu -
E 94 million P ~
’ Google 2022
Q. 9 G}-gle GPT2 540 billion
107 ea” [@ GPB
Open Al 2019
‘ Emé 1.5 billion | L
-10 -5 0 5 10
years

Mammalian brains

Human brain

Cat brain

&>

0.760 billion neurons
10 trillion synapses

80 billion neurons
150 trillion synapses

size of GPT 3.5

GPT-3

size of GPT 4

e Current LLMs have roughly the same number of parameters (1014) as the human brain

* And more compute:

* Brain (10'® FLOPS) over a lifetime (100 years) = 1022 operations
* LLM training time = 10?°> operations



Synapses/parameters

Machine intelligence grows by a factor of 10 in 1 year

Machine vs. Biological intelligence

Biological intelligence grows by a factor of 2 in one million years

MDS, Nature reviews physics (2022)

1022 Should artificial intelligence be interpretable to
humans?
Homo erectus Homo sapiens
u .
i - (150 trillion synapes)
10 (70 trillion synapes)
Mouse
(900 billion synapes) (o) YV T e
Homo sapiens™ ™~ even subexponential grown
14 — == .
10 gL @emcws ~.-=== will soon be superhuman
Chimpanze&s gpTa L
1015 5
- P LM g **************** 9214 ********************
—— a = ;
I~ Mouse GPT3 ° i f
H © GPTaWAPaLM
oo diverged s 7
100 million years ago BERT T IR
IGPTZ e’
ELMo -10 0 5 10
years
1007
T | T T T T | T T T T T | T [
-100 -50 0 50 100

* Both Al and biological intelligence grow exponentially

Millions of years

* Factor of 10° difference in exponent
* Intersection, when machines and biology have comparable "intellegence” is now



Will we run out of data/compute/energy?

ALGORITHMIC PROGRESS IN LANGUAGE MODELS

Ho et al. arXiv:2403.05812
size is compute

How much of advance is algorithmic progress vs data + compute?

Log perplexity OWikitext O Penn Jreebank

5.5

LBL :
&% ~@® GCRN M1,d<apout CEi Traiging FLOP

ec8 @
45 ] [ C See .
LSTM-300units RNN+weight @ @ O
4.0 noise+dynamic eval LSTM

loss

3.5 Large regularized LSTM

3.0
25
2.0

15 GPT3-6.7B

\
Chinchilla /
Gopher (7.1B) LLaMA-65B

1.0

log perplexity

0.5
0.0
2012 2014 2016 2018 2020 2022 2024

Publication date

doubling time

10 algorithmic doubling time = 6 to 14 months!
e controlling for data and network size
5 e algorithms will continue to get better, especially when written by Al

Our result



But physics requires creativity!?

The originality of machines: Al takes the Torrance Test

Erik E. Guzik® ", Christian Byrge °, Christian Gilde ©

2 University of Montana, College of Business, 32 Campus Drive, Missoula, MT 59812, United States
Y Vilnius University Business School, Lithuania
€ University of Montana Western, Business Department, United States

Torrence Test of Creative Thinking (1960)

How many new ways can you think to use a
water bottle?

Suppose you could be invisible for a
day. What problems might that create?
What would the benefits of being
invisible be?

Article | Open access | Published: 10 February 2024

The current state of artificial intelligence generative
language models is more creative than humans on
divergent thinking tasks

Kent F. Hubert 8, Kim N. Awa & Darya L. Zabelina

Scientific Reports 14, Article number: 3440 (2024) | Cite this article

11k Accesses | 2562 Altmetric | Metrics

GPT41
GPT-42
GPT-43
GPT-44
GPT45
GPT46
GPT-47
GPT-48
Control 1
Control 2
Control 3
Control 4
Control 5
Control 6
Control 7
Control 8
Control 9
Control 10
Control 11
Control 12
Control 13
Control 14
Control 15
Control 16
Control 17
Control 18
Control 19
Control 20
Control 21
Control 22
Control 23
Control 24

Fig. 3. Originality National Percentile Ranks (GPT-4 and Control Group).

»
»

Torrence Test score

GPT4

humans

>

GPT4 more creative than 99% of humans



Try it with GPT 4
@ You

how many ways can you think of to use a water bottle?

@ ChatGPT
A water bottle can be versatile! Here are some creative ways to use one:

1. Drinking Container: The most obvious use, for carrying water or other beverages.

2. Plant Waterer: Use it to water plants. The bottle can be especially handy for targeting small
plants or hard-to-reach areas.

3. Weight for Exercise: Fill it with water, sand, or pebbles and use it as a makeshift dumbbell.

4. Ice Pack: Fill it with water and freeze it. You can use it to keep food cool in a cooler or as anice
pack for injuries.

5. Bird Feeder: Cut it into a bird feeder and fill it with bird seed.

6. Storage Container: Use it to store dry goods, nuts, bolts, or coins.

7. Funnel: Cut the top off and use it as a funnel for liquids or small grains like rice or birdseed.

8. Piggy Bank: Decorate it and cut a slot to make a homemade piggy bank.

9. Sensory Bottle: Fill it with glitter, beads, and water (or baby oil) to make a calming sensory
bottle.

10. DIY Sprinkler: Poke holes in it, attach to a hose, and use it as a lawn or garden sprinkler.

11. Lamp or Light: Insert a string of LED lights inside a frosted bottle to create a makeshift lamp.
12. Time Capsule: Fill it with memorable items and bury it or store it as a time capsule.

13. Shaker for Music: Fill with beads or beans to make a DIY musical shaker.



Come up with 20 more

1. Mobile Phone Holder: Cut it to the right size to make a holder or stand for your mobile phone.

2. Yarn Dispenser: Use it to keep yarn tangle-free while knitting or crocheting; just feed the end

through a hole in the cap.

3. Pet Toy: Fill with small treats and cut holes just big enough for them to fall out as your pet plays

with it.

4. Vase: Decorate it and use it as a vase for flowers.

5. Rice Roller: Fill with rice or sand and use it to flatten or compact soil in
trays.

6. Sand Art Container: Layer colored sand inside for a decorative sand ar
7. Drip Irrigation System: Pierce small holes and use it to slowly irrigate
8. Protective Packaging: Cut into rings and use as cushioning for packin¢
9. Craft Supply Organizer: Sort and store beads, buttons, or other small ¢
10. Mini Greenhouse: Cut it in half and use the top as a cover over seedlit
greenhouse.

11. Water Filtration Experiment: Demonstrate water filtration by layering
charcoal inside.

12. Kitchen Dispensers: Use for storing and dispensing bulk spices or gr
13. Pencil Holder: Decorate and use it to store pens, pencils, and other o
14. Portable Shower: Poke holes in the cap, fill with water, and use it as a
camping.

15. Boot Shaper: Fill with water and freeze to use as a shaper to keep boc
16. Hand Washing Station: Set up with soapy water and a towel for outdc
17. Art Palette: Cut and use the bottom as 0 alette for mixing paints.
18. Bubble Blower: Fill with a soap solution and use for blowing bubbles.
19. Salt Spreader: Fill with salt and poke holes in the lid to use for de-icing dri'
sidewalks in winter.

20. Dog Poop Bag Dispenser: Store and dispense dog poop bags convenientl

@ You

10 more. be very creative

1. lll-lom.emacie Barometer: Use it to create a simple weather instrument. Seal partway filled with
colored water, and observe the water level changes to predict weather changes.

2. Solar Water Heater: Paint it black, fill with water, and leave it in the sun. It can heat up water for
washing dishes or hands when camping.

3. Hologram Projector: Cut the top off and use a smartphone to project a hologram. There are
plenty of online tutorials to turn a cut bottle into a DIY 3D hologram projector.

4. DIY Kayak Outrigger: Connect two large water bottles on either side of a small kayak or canoe
with rods for added stability.

5. Miniature Snow Gilobe: Fill it with glycerin, water, glitter, and tiny waterproof figures to create a
personalized snow globe.

6. Interactive Cat Toy: Secure a feather or toy to the top of the bottle. Cats can bat it around and
enjoy the spinning motion.

7. Refillable Paint Roller: Fill with paint and attach a modified roller on top; it can simplify painting
by integrating the paint container and applicator.

8. Zero Gravity Coffee Brewer: Inspired by space technology, use it to design a coffee brewer that
can operate in zero gravity, using a system of internal chambers for brewing and dispensing.

9. Underwater Camera Housing: Waterproof and modify it to hold a small camera for underwater
photography in shallow waters.

10. Wind-Powered Light: Attach blades to a water bottle and mount it on a pole with a small LED
light inside. The wind rotates the bottle, generating enough power to light the LED.



Augmented intelligence: LLMs help us thrive

Dell'Acqua et al, “Navigating the Jagged Technological Frontier”
(Harvard Buisness School, 2023)

Can LLMs help consultants?

08 . .
Al is a “skill-leveler”
07
06 _Qualty
e bottom half improved 43%
=
g o4 6 top half improved 17%
03 3 7
7 1
02 4 6 -
3 1 5
0.1
2 1 %1
0.0 31
1 4
Quality 2 1
Distribution of output quality across all the tasks. The blue group did not use Al, the 0 - 1 1 4
green and red groups used Al the red group got some additional training on how to Bottom_Half 0 1
use AL . s
Skilled Participants Top-Half Skilled Participants

Average consultants using Al become as
good as the best consultants



10,000 Einsteins
@ You

is progress in theoretical physics due to the outsized contribution of a small number of
individuals?

@ ChatGPT
Yes, progress in theoretical physics, like many fields of science, often appears to be driven by the

outsized contributions of a relatively small number of individuals.

Can Al be a skill-leveler for high-energy theory?

the rest
of us
p
exceptional
. . 10,000
theoretical phy5|csts Eireteins

* LLMs are already helping



Theoretical High Energy Physics may have stalled

In the past, we made progress Are we even making forward progress
depsite many dead ends anymore?

o ST %

Maybe the problems are just too difficult (for us)

Could a cat ever learn to play chess?

e Humans have limits too




Humans are limited by biology

Humans like to “visualize”

g

=
T T T ST e TeT
*
-
LR

project fZanissate
to 2D » - T 3
.y

v

Oz Grack

d

2

8

: N 3
0 10 @ [} 50

*®»
Sty Trd (rerctes)

Why do we do this? Because we have eyes
e 2D is not special to a machine.
* Machines can “visualize” in d dimensions

Eyes have nothing to do

with particle physics!

Humans can only hold 5-9 concepts in working memory at once

* We like simple-looking equations

) = Hyp iy =myp  Gu =rTuw

e Computer memory can handle much more than 5-9 concepts at once
* They can understand systems not governed by simple equations



What do we need to get there?

Current state-of-the art can solve textbook physics problems

* Trained on solved problems from books, physics.stackexchange, chegg etc.
* Books, chegg, etc. written by human beings who read books, chegg, etc.

* i.e. we generate our own training data

Graduate school is largely about learning how to train yourself

Alpha Zero: learns to solve chess problems by generating its own training data

Current LLMs
e can generate and solve problems
user (human) feedback helps refine model

it can refine its own model!
G Ph. D?

Language models are vey close to training themselves to be better physicists



Beyond augmented intelligence

Suppose a machine understands the theory of everything but we don’t
e e.g.can calculate the fine-structure constant from scratch
e e.g.can preduct the endpoint of black-hole evaporation

Is this enough or do we need to understand it too?

* The authors of Popular science books
understand the details; we just get the general idea

| don’t understand the proof of Fermat’s last theorem
* I’'m glad that somebody does

N . |
A e Does it matter that the person is human?
HISTORY W pRiAN GREENE g
OF TIME [ ootk
If a machine understands fundamental physics it can
1. Dumb it down so we can get the general idea

2. Find practical applications

Because of Al, | am now optimistic
for substantive progress in high-
energy theory in my lifetime

Is this what we want? No.

But maybe it’s the best we will get.




Conclusions

* Machine learning is rapidly tranforming high energy physics
* Current revolution in applications and advances are in “data science”
* In hep-th and hep-ph problems are largely symbolic

1. How do we transition from data science to symbolic theoretical physics?

* It will get easier once we get started
* Symbolic search problems (polylogarithms, spinor helicity) searching for
* Properties of the S-matrix (unitarity) simplicity
e String Theory Vacuua

2. Generative Al is the future

e Short term: augmented intelligence
* Machines help us organize information
* Smooth transition to arXAlv: more and more Al input into arXiv papers

* Long term: artificial intelligence
* Machines will suggest problems, solve problems: G Ph. T
* Machines will dumb things down, so we can appreciate their work
e Superhard problem in theoretical physics may finally be solved



