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Outline
Part 1: The Present
• Symbolic ML for high energy theory

Part 2: The Future
• Can machines do theoretical physics?



0. The Past

Björn Karlsson, MidJourney January, 2024



The Past: Collider Physics

Lessons

Top Tagging (2008 – 2022)

[MDS,  arXiv:2103.12226]

Take some tool highly engineered for another puropose and shoehorn it into physics

Convolutional networks for facial recognition
Point clouds/deep sets
  for self-driving cars
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SOTA 2008
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er • Machine learning is extremely powerful
for characterizing numerical data

• Lower level inputs work better

• ML trades physical insight for performance
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1. The present

Björn Karlsson, MidJourney January, 2024



What do high-energy theorists actually do?
1. Most papers on hep-th and hep-ph are largely symbolic

• Calculate something
• Find/establish some relationship
• Solve some toy model
• Extract behavior of some theory in some limit

2. What makes a question interesting?
• It connects to nature
• You can make progress on it
• Someone else thought it was interesting
• It is related to something someone else thought was interesting

Can ML do these things?

Can ML answer this? Not yet. But soon.

• It’s starting to...
• ML is good at helping solve well-defined problems

• Much harder problem



How do we transition from data science to symbolic problems?
• Large Langauge Models show that  ML good for symbolic problems

• Potential is there

• A lot of what physicists do is study examples, look for patterns, and generalize

• A place to start is with discrete symbolic data
• Find some theoretical physics problems where ML can help
• Get a feel for what it can (and currently cannot) do

Most uses of ML in physics so far are data science
• Machine learning is great at characterizing numerical data
• Has led to revolutionary progress on a great variety of physical questions
• Much much more still to be done 

This conference

This talk



1. Mathematics

https://machine-learning-for-theorem-proving.github.io/

• Automated proof assistants are improving fast

• FunSearch: use LLMs to write code to solve math problems

• Progress in autoformalization: using LLMs to translate natural language 
into formal mathematics (e.g. input to LEAN)

Pure mathematics is almont entirely focused on symbolic problems

• These tools haven’t seen much application in physics, but could soon...

(NeurIPS 2023)



1. What is its simplest form?
2. Does it simplify to zero? 
3. What identities do we apply in what order to simplify it?

2. Simplifying polylogarithms
An important and challenging step in the computation of Feynman diagrams is to 
simplify polylogarithmic expressions

• No classical algorithm for this problem
• Easy to make more complicated expressions from simple ones by scrambling

• Like cooking an egg: easy to scramble, hard to unscramble

We generate symbolic data and then look for patterns to simplify

[ Dersy, MDS, Zhang, 2206.04115]



Two machine learning approaches

1. Reinforcement learning

Basic idea: 
• apply known polylog identities like moves in a game
• train by learning to reverse scrambling steps

2. Transformer networks

• Used by large langauge models
• Learn to ``guess” answer

translate from complicated to simple

Dutch: 
naamsveranderingsdocumentenbriefgeheel

English: dossierResults

• Both methods work well (>80% success)
• Transformers do better: 91% success up to transcendental weight 4

translate

Simplifying polylogarithms



e.g: spinor helicity amplitudes

The same basic RL or transformer approach can be applied to many problems
• Need to be able to generate training data
• Have identities to apply

simplify this:

Possible “moves”:

3. Simplifying spinor-helicity amplitudes
[Cheung, Dersy, MDS, in perparation]

Schouten identity

Momentum conservation

Multiply by  1

Add 0



Generate training data by scrambling

transfromer 
will learn
to translate

• Expressions can be very long: 50 terms or more
• Need new techniques for organizing transformer

• We use contrastive learning



• Learns dimensional analysis
• Learns other features as well

Contrastive learning 
Learn an embedding so that terms that are similar are close

• similar = appear in some identity
• close =  metric on embedding space

t-SNE on latent space

learned mapping

distance inversely
correlated with number
of identities away



• Compute 5-point MHV amplitude with Feynman diagrams: 79 terms (1990 tokens)

Example application

contrastive
learning

transformer

simplified form 
of 2 terms

after 55 
iterations

• Output is 1 term (27 tokens)

promising
 pairs

• Feed to network



4. S-Matrix bootstrap

M

The S-matrix is the fundamental object of Quantum Field Theory

• A lot is known about it from pertubation theory (Feynman diagrams)
• Some things are known/conjectured about it non-perturbatively

• e.g. it should be unitary which implies the optical theorem

proof:

• Non-perturbative constraint
• Relates complex scattering amplitude M to real cross section σ=M†M

Given cross section σ=|M|2  can the phase of 
M be uniquely determined?

Optical theorem



Elastic scattering
Unitarity constraint simplifies in the ”elastic regime”
• 4 m2 < s < 9 m2

• Only 2-particle states are relevant
• energy conserved, kinematics described by scattering angle z = cos θ

Im =
2

Write the amplitude as

Unitarity constraint

⇒

⇒

For what B(z) does φ(z) exist satisfying this equation?
For what B(z) is φ(z) unique or not-unique?

optica
l 

theorem

optical 

theorem



Can we find φ(z) given B(z) with ML?  ... Yes!

φ(z)

B(z)

s=8m2

sinμ = 1.6

some known examples

φ(z)

B(z)

s=4.5m2

sinμ=0.88

find φ given B using ML

• Parametrize φ(z) as a neural network • Loss function is unitarity condition 

excellent
agreement
with known
results

[ Dersy, MDS, Zhiboedov, 2308.09451 ]



When does a phase exist?
<latexit sha1_base64="YbwVIphlhsZ4RYocgmLV9tcVbBI=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVUr0IRS8eK9gP7C4lm2bb0CS7JFmhLP0XXjwo4tV/481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHN/O/M4TVZrF8sFMEhoIPJQsYgQbKz36mklfpOga9csVt+rOgVaJl5MK5Gj2y1/+ICapoNIQjrXueW5iggwrwwin05KfappgMsZD2rNUYkF1kM0vnqIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif10tNdBVkTCapoZIsFkUpRyZGs/fRgClKDJ9Ygoli9lZERlhhYmxIJRuCt/zyKmlfVL16tXZfqzRu8jiKcAKncA4eXEID7qAJLSAg4Rle4c3Rzovz7nwsWgtOPnMMf+B8/gCwlJBI</latexit>

sinµ =

• Martin proved:
• If sinμ < 1 for a given B(z) then there always exists a phase φ(z)

What is special about sinμ?

In 1967 Andre Martin proposed 

as an indicator of phase determination

bad solution
(high loss)

Contours of sin μ

high sinμ

Loss landscape from ML search for φ

good solution
(low loss)

• Loss landscape correlates with sin μ
• sin μ measures how hard these solutions are to find
• Don’t need exact solutions to learn this lesson

high sin μ

low sin μ



Can there be more than one φ given B?

Gradient descent in sin μ leads to new phase-ambiguous cross sections

First new
phase-ambiguous
solution in
50 years!

New lowest sinμ 
phase ambuity

sinμ = 1.67

• Impose unitarity condition loss for each φ:

ML approach: two NNs for two phases φ1(z) and φ2(z)

• Add repulsive loss to keep solutions apart

φ1(z) = 

φ2(z) = 

Open question since 1977
 Are there phase-ambiguous amplitudes with sinμ < 2.15?

Atkinson (1977) found two phases φ1(z) and φ2(z) for the same B(z) with sinμ > 2.15
Crichton (1966): yes



5. String theory

April 2024

String theory is still trying to find the Standard Model among its infinite vacuua

Calabi proved metrics exist and are unique
• Not constructive: no non-trivial analytic 

Calabi-Yau metrics are known! 
Compactify on a 
Calabi-Yau manifold

compute 
spectrum

uses metric

refine to find SM

Recent review

Ashmore, He, Ovrut arXiv:1910.08605
• use ML to find metrics numerically
• Loss function is Ricci-flatness

Halverson and Ruehle arXiv:2310.19870
•  NNs to look for fixed points of metric flows

Carifio et al arXiv:1707.00655
• Trained models to predict rank of gauge group in F-theory compactifications
• Patterns led to conjecture, which was then proven by humans 

one approach:



3. The future

Markus Graf, July, 2023



Large Language Models are the (immediate) future

BERT 
Google 2018

94 million

Open AI 2019
1.5 billion 

Open AI 2020
175 billion

Google 2022
540 billion

Open AI GPT4 
170 trillion parameters

LLMs

Mammalian brains

80 billion neurons
150 trillion synapses

Human brain

size of GPT 4

0.760 billion neurons
10 trillion synapses

Cat brain

size of GPT 3.5

• Current LLMs have roughly the same number of parameters (1014) as the human brain
• And more compute:

• Brain (1016 FLOPS) over a lifetime (100 years) = 1022 operations
• LLM training time = 1025 operations



Homo sapiens 
(150 trillion synapes)Homo erectus 

(70 trillion synapes)
Mouse
(900 billion synapes)

diverged 
100 million years ago

• Biological intelligence grows by a factor of 2 in one million years
• Machine intelligence grows by a factor of 10 in 1 year

• Both AI and biological intelligence grow exponentially
• Factor of 106 difference in exponent
• Intersection, when machines and biology have comparable "intellegence” is now

MDS, Nature reviews physics (2022)

Machine vs. Biological intelligence

GPT4

even subexponential grown
will soon be superhuman



Ho et al. arXiv:2403.05812

lo
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algorithmic doubling time = 6 to 14  months!
• controlling for data and network size
• algorithms will continue to get better, especially when written by AI

How much of advance is algorithmic progress vs data + compute?

Will we run out of data/compute/energy?

size is compute

doubling time 



Torrence Test of Creative Thinking (1960)

GPT4  more creative than 99% of humans

• How many new ways can you think to use a 
water bottle?

• Suppose you could be invisible for a 
day. What problems might that create? 
What would the benefits of being 
invisible be?

But physics requires creativity!?

Torrence Test score

GPT4

humans



Try it with GPT 4



Come up with 20 more



Yes!
By a lot!

Augmented intelligence: LLMs help us thrive
Dell'Acqua et al, “Navigating the Jagged Technological Frontier”
 (Harvard Buisness School, 2023) 

Can LLMs help consultants?

bottom half improved 43%

top half improved 17%

AI is a “skill-leveler”

• Average consultants using AI become as 
good as the best consultants



10,000 Einsteins

exceptional 
theoretical physicsts

Can AI be a skill-leveler for high-energy theory?
the rest 

of us

• LLMs are already helping 

10,000 
Einsteins?



In the past, we made progress
depsite many dead ends

Are we even making forward progress 
anymore?

Maybe the problems are just too difficult (for us)

Could a cat ever learn to play chess?

goal

Theoretical High Energy Physics may have stalled

• Humans have limits too



Humans are limited by biology

project
to 2D

Why do we do this? Because we have eyes 
• 2D is not special to a machine. 
• Machines can “visualize” in d dimensions

Humans like to “visualize”

• We like simple-looking equations

• Computer memory can handle much more than 5-9 concepts at once
• They can understand systems not governed by simple equations 

Eyes have nothing to do
with particle physics!

<latexit sha1_base64="gr06q3QdPi8n3Izq2gdXUjdfXk8=">AAACBHicbZDLSsNAFIYn9VbrLeqym8EiuCqJFHUjFN10WcFeoA1hMp20QycXZk6EErpw46u4caGIWx/CnW/jJM1CW38Y+PjPOTNzfi8WXIFlfRultfWNza3ydmVnd2//wDw86qookZR1aCQi2feIYoKHrAMcBOvHkpHAE6znTW+zeu+BScWj8B5mMXMCMg65zykBbblmleNhTCRwIlwMmhXH17iVg2vWrLqVC6+CXUANFWq75tdwFNEkYCFQQZQa2FYMTppdTwWbV4aJYjGhUzJmA40hCZhy0nyJOT7Vzgj7kdQnBJy7vydSEig1CzzdGRCYqOVaZv5XGyTgXzkpD+MEWEgXD/mJwBDhLBE84pJREDMNhEqu/4rphEhCQedW0SHYyyuvQve8bl/UG3eNWvOmiKOMqugEnSEbXaImaqE26iCKHtEzekVvxpPxYrwbH4vWklHMHKM/Mj5/ALRsltw=</latexit>

i@t = H 
<latexit sha1_base64="V4EsCAEwITsmOeFPcfJo+fmqjIM=">AAACCXicbVDLSgMxFM34rPU16tJNtAiuyowUdSMU3bisYB/QGUomzbShmSQkGaGUbt34K25cKOLWP3Dn35iZzkJbD4Qczrn3JvdEklFtPO/bWVpeWV1bL22UN7e2d3bdvf2WFqnCpIkFE6oTIU0Y5aRpqGGkIxVBScRIOxrdZH77gShNBb83Y0nCBA04jSlGxko9F9LgKODCQHtJpAxFDAZSU3gFk5z03IpX9XLAReIXpAIKNHruV9AXOE0IN5ghrbu+J004yWZjRqblINVEIjxCA9K1lKOE6HCSbzKFJ1bpw1goe7iBufq7Y4ISrcdJZCsTZIZ63svE/7xuauLLcEK5TA3hePZQnDJoBMxigX2qCDZsbAnCitq/QjxECmFjwyvbEPz5lRdJ66zqn1drd7VK/bqIowQOwTE4BT64AHVwCxqgCTB4BM/gFbw5T86L8+58zEqXnKLnAPyB8/kDbDmY5w==</latexit>

i 6@ = m 
<latexit sha1_base64="U0+7+MNPZg63BADtn6fnxfaIW98=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgqiRS1I1QdKHLCn1BE8JkOmmHzkzCzEQooTs3/oobF4q49Rfc+TdO2yDaeuDC4Zx7ufeeMGFUacf5sgpLyyura8X10sbm1vaOvbvXUnEqMWnimMWyEyJFGBWkqalmpJNIgnjISDscXk/89j2RisaioUcJ8TnqCxpRjLSRAvvwJsg8nnoiHcNL6A1RkiDY+NECu+xUnCngInFzUgY56oH96fVinHIiNGZIqa7rJNrPkNQUMzIueakiCcJD1CddQwXiRPnZ9I8xPDZKD0axNCU0nKq/JzLElRrx0HRypAdq3puI/3ndVEcXfkZFkmoi8GxRlDKoYzgJBfaoJFizkSEIS2puhXiAJMLaRFcyIbjzLy+S1mnFPatU76rl2lUeRxEcgCNwAlxwDmrgFtRBE2DwAJ7AC3i1Hq1n6816n7UWrHxmH/yB9fENmXCZKQ==</latexit>

Gµ⌫ = Tµ⌫

Humans can only hold 5-9 concepts in working memory at once



What do we need to get there?
Current state-of-the art can solve textbook physics problems
• Trained on solved problems from books, physics.stackexchange, chegg etc.
• Books, chegg, etc. written by human beings who read books, chegg, etc.
• i.e. we generate our own training data

Alpha Zero: learns to solve chess problems by generating its own training data 

Current LLMs
• can generate and solve problems
• user (human) feedback helps refine model
• it can refine its own model!
• G Ph. D?

Language models are vey close to training themselves to be better physicists

Graduate school is largely about learning how to train yourself



Beyond augmented intelligence

• The authors of Popular science books
understand the details; we just get the general idea

If a machine understands fundamental physics it can
1. Dumb it down so we can get the general idea
2. Find practical applications 

Is this what we want? No. 
But maybe it’s the best we will get.

I don’t understand the proof of Fermat’s last theorem
• I’m glad that somebody does
• Does it matter that the person is human? 

Suppose a machine understands the theory of everything but we don’t
• e.g. can calculate the fine-structure constant from scratch
• e.g. can preduct the endpoint of black-hole evaporation

Is this enough or do we need to understand it too?

Because of AI, I am now optimistic 
for substantive progress in high-
energy theory in my lifetime



Conclusions
• Machine learning is rapidly tranforming high energy physics

• Current revolution in applications and advances are in “data science”
• In hep-th and hep-ph problems are largely symbolic

1. How do we transition from data science to symbolic theoretical physics?

• It will get easier once we get started
• Symbolic search problems (polylogarithms, spinor helicity)
• Properties of the S-matrix (unitarity)
• String Theory Vacuua

2. Generative AI is the future

• Short term: augmented intelligence
• Machines help us organize information
• Smooth transition to arXAIv: more and more AI input into arXiv papers

• Long term: artificial intelligence
• Machines will suggest problems, solve problems: G Ph. T
• Machines will dumb things down, so we can appreciate their work
• Superhard problem in theoretical physics may finally be solved 

searching for
simplicity


