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0. Abstract

Sensitivity forecasts inform the design of experiments and the direction of theoretical efforts. To arrive at rep-
resentative results, Bayesian forecasts should marginalize their conclusions over uncertain parameters and noise
realizations rather than picking fiducial values. However, this is typically computationally infeasible with current
methods for forecasts of an experiment’s ability to distinguish between competing models. We thus propose a novel
simulation-based methodology utilizing neural Bayes ratio estimators capable of providing expedient and rigorous
Bayesian model comparison forecasts without relying on restrictive assumptions.

1. Motivation

In many scientific contexts, the question of interest is most clearly formulated as one of
Bayesian model comparison [1, 2]. For example, if a signal has been detected (e.g. gravi-
tational waves [3]) or if there is significant evidence for new physics (e.g. non-zero neutrino
mass in CMB analysis [4]).

To design experiments to answer such questions, we thus need fast and versatile methods for
forecasting the expected results from Bayesian model comparison analyses, which marginalize
their conclusions over the uncertainties in potential data to ensure robust results. However,
current methods are either too slow to be used to explore the potential data space (e.g., nested
sampling on simulated data [5]) or have limited applicability due to restrictive assumptions
(e.g., Savage–Dickey forecasts [6, 7]). We thus propose a new method using simulation-
based inference and neural Bayes ratio estimation, which simultaneously addresses the above
problems and no longer requires an explicit likelihood.

2. Neural Bayes Ratio Estimation
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Fig. 1: Illustration of a neural Bayes ratio estimator (a.k.a., evidence network). The network is trained to classify between simulated
data generated from two competing models. For this training, the loss function used is intentionally chosen such that the output of
the network converges to a known invertible function G of the Bayes ratio between the two models K(d), allowing the network
output to be transformed directly into K. Introduced in Jeffrey and Wandelt [8], these networks have been shown to be able to

calculate accurate K for actual scientific problems after training times less than the cost of a single nested sampling run.

3. Fully Bayesian Forecast Methodology

1. Create data simulators for the two com-
peting models (including experimental
considerations such as noise or selec-
tion effects).

2. Using the two simulators, generate
training, validation, and testing sets of
labelled simulated data and train a neu-
ral Bayes ratio estimator.

3. Validate the network using a blind cov-
erage test [8] to verify the network’s
accuracy (see Fig 2.) and, if possi-
ble, also compare its output to a sample
of K values calculated from traditional
Bayesian techniques (see Fig 3.).

4. Exploiting the amortized nature of neu-
ral Bayes ratio estimators evaluate K
over the parameter and noise space (or
equivalently over the uncertainties in
potential data).

5. Using these K samples marginalize the
conclusions of the Bayesian model com-
parison forecast to arrive at a represen-
tative result.
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Fig. 2: Blind coverage test verifying the accuracy of a converged
neural Bayes ratio estimator. See Jeffrey and Wandelt [8] for

details.
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Fig. 3: Comparison of K values calculated using a neural Bayes
ratio estimator and the nested-sampling code Polychord, showing

good agreement out to 5σ significance.

4. Example - Detecting the 21-cm Global Signal

To illustrate the methodology, we forecast the expected probability of a REACH-like [9]
experiment detecting the global 21-cm signal at≥ 3σ statistical significance given our current
knowledge of high-redshift astrophysics and the experimental foregrounds. We find a 46%
chance of making this detection (assuming a noise level between the pessimistic and expected
case outlined in the REACH mission paper). Furthermore, our methodology facilitates an
investigation of how this detection chance varies with uncertain astrophysics (see Fig 4.), and
hence the features of the 21-cm signal the experiment is sensitive to. This analysis took only
5.54GPU hours to perform, a 105.2 cost-weighted speed-up compared to the 45,000,000CPU
hours an equivalent nested-sampling-based approach would have required.
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Fig. 4: Triangle plot depicting the variation of the probability of a global 21-cm signal detection at ≥ 3σ statistical significance by a
REACH-like experiment for select unknown astrophysical parameters. The observation band is assumed to cover the redshift range
7.5 to 28.0, with frequency resolution ∆ν = 1MHz. We adopt the Hills et al. [10] physical foreground model, assume white noise of

σnoise = 0.015K, and use globalemu [11] as our global 21-cm signal model.

5. Conclusions and Further Directions

Neural Bayes ratio estimators make fully Bayesian forecasts of model comparison questions
computationally feasible without the need for restrictive assumption or even an explicit like-
lihood. In a follow-up study, we shall illustrate how the outlined methodology can be used
to optimize an experiment’s design to maximize the probability of getting a definitive answer
to the scientific question of interest.
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