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Problem - Data Marginalized Forecasts for Bayesian
Model Comparison are Typically Infeasible

Nested Sampling: Generally applicable but too slow to explore data space
Savage–Dickey forecasts: Restrictive assumptions and require nested models

Both require explicit likelihoods.
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Solution - Neural Bayes Ratio Estimation (Evidence Network)
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Example - Detecting the Global 21-cm Signal
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Just 5.54GPU hours to perform instead of the 45,000,000CPU
hours nested-sampling would have taken.


