ML Unfolding for error reduction in Lattice QCD observables

UNIVERSITÄT BIELEFELD

Lattice QCD - currently our best probe for understanding low energy QCD

Discretise space-time and move to Euclidean space

$$
\downarrow
$$

Sample Gauge configurations from a probability distribution

$$
\downarrow \quad Z=\int \mathscr{D} U \operatorname{det} M_{f}^{n} e^{-S_{G}}
$$

Compute observables on the generated configurations $\mathcal{O}(\sim(1-10) K)$

$$
\langle\mathcal{O}\rangle \sim \frac{\partial \ln Z}{\partial K} \sim \operatorname{Tr}\left(M_{f}^{-1} \frac{\partial M_{f}}{\partial K}\right)
$$

Typical size of Fermion matrices : $N_{\sigma}^{3} \times N_{\tau} \times N_{c} \times 4$, can go up to $\sim O\left(10^{7}-10^{9}\right)$

Random Noise Method

No access to individual matrix elements - only matrix vector products ! \downarrow Choose L randomly drawn vectors η satisfying certain conditions to get

Question 1 : Can we train a NN to learn the systematic effect caused by using only finite such random vectors - given for some observable the true distribution with very large L and measured distribution with very small L ?

Question 2 : How does this generalise to different Matrices?

