Gradient-Annihilated PINNs for Solving Riemann Problems: Application to Relativistic Hydrodynamics

Antonio Ferrer-Sánchez

IDAL, Electronic Engineering Department, ETSE-UV, University of Valencia.

Valencian Graduate School and Research
Network of Artificial Intelligence (ValgrAI), Spain.
(Antonio.Ferrer-Sanchez@uv.es)

José D. Martín-Guerrero

IDAL, Electronic Engineering Department,
ETSE-UV, University of Valencia.

Valencian Graduate School and Research

Network of Artificial Intelligence (ValgrAI),
Spain.
(jose.d.martin@uv.es)

Roberto Ruiz de Austri

Instituto de Física Corpuscular CSIC-UV. (rruiz@ific.uv.es)

José A. Font
Department of Astronomy and Astrophysics,
University of Valencia.
(j.antonio.font@uv.es)

Alejandro Torres-Forné Department of Astronomy and Astrophysics, University of Valencia.
(alejandro.torres@uv.es)

Vniversitat BÖVALĖNCIA

Department of Astronomy and Astrophysics

METHOLOGY PROPOSED

Diagram and algorithm

SOME RESULTS

Riemann problems in Relativistic Hydrodynamics

Figure 2: Final profiles for the primitive variables (density, velocity and pressure) with respect to the analytical

