

Improving Two-Neutron Detection Efficiency on the NEBULA Detector using XGBoost Algorithm

Y. Li^{1,2}, Z. Yang³, Y. Kubota¹, T. Uesaka¹

(On behalf of SAMURAI18 collaboration)

¹ RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama, Japan
 ² Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
 ³ School of Physics, Peking University, Beijing, China

Background: multi-neutron detection is very important in nuclear physics

 \triangleright

 \succ

- In the field of nuclear physics, **multi-neutron detection** plays a critical role in revealing specific nuclear properties around neutron drip line
 - > Neutron drip line: The boundary beyond which atomic nuclei are unbound
 - Invariant method: All decay products are required

٠

Multi-neutron decay: Many drip line nuclei or resonances have more than one decay neutron

Four-neutron resonance states ^[1]

First observation of ²⁸O^[2]

Duer, M., Aumann, T. et al. Nature 606, 678–682 (2022).
 Kondo, Y., Achouri et al. Nature 620, 965–970 (2023).

CrossTalk events and XGBoost method

> Two-neutron Efficiency curve

• Within a smaller relative energy range, the detection efficiency for two-neutron is significantly improved.

6

RIKEN

• This performance is very helpful for enhancing the detection of multi neutrons.

CrossTalk

Two-

neutron

Different numbers of features

- Using the same number of features as conventional methods, XGBoost methods do not have obvious advantages.
 After adding other features including relative energy.
- After adding other features including relative energy, XGBoost demonstrates its ability to classify in high-dimensional spaces..

Leaf node

(The classification mark score)