fusions

Can we bring the latest developments in score based generative modelling to a nested sampling paradigm?

INFERENCE

Fundamental physics is full of hard inference problems. Our optimization or sampling algorithms have to be able to navigate complex geometry

BRIDGING DISTRIBUTIONS

Population Monte Carlo methods - particle filters - form bridges from known (prior) to complex unknown (posterior) distributions. Sequential Monte Carlo (SMC) and Nested Sampling (NS) are two variants evolving populations of points^[6]. Both give us access to the normalizing constant Z.

DIFFUSION

GEOMETRY

Diffusion models learn the gradient of the implicit density of a point cloud. Solving evolution through this field with Stochastic Differential Equation (SDE) or Ordinary Differential Equation (ODE) solvers yields Diffusion^[7] or Continuous flows^[8].

Neural learnt maps can transport any known distribution to an implicit target, no strict requirement on latent/prior!

P(0

IC NEUTRALISING BAD GEOMETRY IN BRIDGING INFERENCE PROBLEMS **DAVID YALLUP** yallup/fusions dy297@cam.ac.uk

RESULTS*

Diffusion models introduce time axis to the problem, bridging algorithms have another time axis we can efficiently evolve by fine tuning the score estimate.

Technical references:

echnical references: ejithub.com/patrick-kidger/diffrax ejithub.com/andley-lab/anesthetic ejithub.com/yalup/fusions ejithub.com/google/flax ejithub.com/google/flax

Comparison to standard (non-neural) tools^[9,10] shows prom step samplers despite using rejection sampling, whilst mainta on benchmark challenging problems.

Algorithm demonstrated uses zero classical methods, treatin problem solely with neural networks and score based models

* Work in progress, comparison to other neural methods^{[4,5,11,} to tune in the algorithm.

	N _{live} = UltraN walltim	= 2000 for all, o est in 10D N _{like} re.	otherwise folk	owing defau ter early ter	ults. mination	due to exc	ceeding	
θ		\bigwedge			=	PolyChor fusions	rd	
θ	° (J	$^{\prime}$					
θ		θ7	e e			θα		
Partial corner plot of 10D Rosenbrock function								
hows promising scaling, comparable to whilst maintaining accurate predictions								
thods, treating the geometry of the based models.								
methods ^[4,5,11,12] , plenty left on the table								
	_				_			
	955 1444 155	UN CA	IIV M	ER B	SI R I	T) []]	í C OG)F E

Cavendish Laboratory