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INFERENCE GEOMETRY

Bad geometryB3! in inference
problems comes in many
guises, and intuition gets
progressively less clear in high
dimension. Machine learnt

Fundamental physics is full of hard inference problems. Our optimization or sampling algorithms
have to be able to navigate complex geometry
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Learnt gradient vector field mapping prior to posterior.
Toy 1D inference problem.
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= NEUTRALISING BAD GEOMETRY IN BRIDGING INFERENCE PROBLEMS
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R E S U L I S Nisve = 2000 for all, otherwise following defaults.

9 UltraNest in 10D Ny, projected after early termination due to exceeding
10 T T T o = UltraNest walltime.
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on benchmark challenging problems.
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oak % i } i Algorithm demonstrated uses zero classical methods, treating the geometry of the
problem solely with neural networks and score based models.
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* Work in progress, comparison to other neural methodsl#5.11.12], plenty left on the table

Evolution of likelihood constrained prior through a NS run Calculated log integral for Rosenbrock function in various dimensions to tune in the algo rithm.

Evolution of likelihood constrained prior through a NS run.
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