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DIFFUSION MEETS NESTED SAMPLING
NEUTRALISING BAD GEOMETRY IN BRIDGING INFERENCE PROBLEMS
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Evolution of likelihood constrained prior through a NS run.
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Learnt gradient vector field mapping prior to posterior.
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Toy 1D inference problem. 
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Schematic reconstructing posterior from NS shells.

Clustering/ensembling to deal with multimodalities. Gradients efficiently explore sweeping degeneracies.

Whitening transforms to regularize the metric.
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2D representation of learnt vector fields.

INFERENCE 
Fundamental physics is full of hard inference problems. Our optimization or sampling algorithms 
have to be able to navigate complex geometry

★

G̃-EWMSSM. 1σ and 2σ CL regions. GAMBIT 2.4.0
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Gambit Collaboration SUSY profile likelihood scan[1]
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DESI collaboration LCDM samples[2]

P(θ |D) = ℒ(D |θ)P(θ)
Z

Bayes Rule

Population Monte Carlo methods — particle filters 
— form bridges from known (prior) to complex 
unknown (posterior) distributions. Sequential Monte 
Carlo (SMC) and Nested Sampling (NS) are two 
variants evolving populations of points[6]. Both give 
us access to the normalizing constant . Z

Diffusion models introduce time axis to the problem, 
bridging algorithms have another time axis we can efficiently 
evolve by fine tuning the score estimate.
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Diffusion models learn the gradient of 
the implicit density of a point cloud. 
Solving evolution through this field with 
Stochastic Differential Equation (SDE) 
or Ordinary Differential Equation (ODE) 
solvers yields Diffusion[7] or Continuous 
flows[8].


Neural learnt maps can transport any 
known distribution to an implicit target, 
no strict requirement on latent/prior!

Bad geometry[3] in inference 
problems comes in many 
guises, and intuition gets 
progressively less clear in high 
dimension. Machine learnt 
neural mappings offer us a new 
tool to approach this.


In the context of bridging distributions see pocoMC[4], nessai[5]

yallup/fusions dy297@cam.ac.uk yallup@github.io
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Corner plot of 5D Rosenbrock function
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Number of function evaluations required for Rosenbrock function in various 
dimensions
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Calculated log integral for Rosenbrock function in various dimensions

Comparison to standard (non-neural) tools[9,10] shows promising scaling, comparable to 
step samplers despite using rejection sampling, whilst maintaining accurate predictions 
on benchmark challenging problems.


Algorithm demonstrated uses zero classical methods, treating the geometry of the 
problem solely with neural networks and score based models.


* Work in progress, comparison to other neural methods[4,5,11,12], plenty left on the table 
to tune in the algorithm.
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Partial corner plot of 10D Rosenbrock function

 for all, otherwise following defaults.


UltraNest in 10D  projected after early termination due to exceeding 
walltime.
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Evolution of likelihood constrained prior through a NS run.
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Can we bring the latest developments in score based 
generative modelling to a nested sampling paradigm?


