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• Transverse collective flow is a crucial observable in 
studying the properties of quark-gluon plasma

• Collective flow is anisotropic and depends on the equation 
of state and transport coefficients of the system

• Anisotropic flow develops in the early partonic phase, 
evolves through relativistic hydrodynamics, and later gets 
influenced by hadronic phase interactions

● First deep learning-based estimator for elliptic flow (v2)

• Trained on final-state freeze-out surface, learns from 
multiparticle production dynamics and correlations to estimate 
any physical observable of interest

•  surface as input
• Weights: , mass, and energy 
• Training on Pb-Pb collisions,  TeV 

(min. bias) simulated with AMPT
• Optimizer: adam, Loss: mse 
• Choice of pixel size optimized with 
MSE and training time/epoch

• Overfitting rejection through 
EarlyStopping callback

• Noisy simulation for systematics

• Predictions are obtained for the collision centrality, energy, system size, 
particle species, and transverse momentum dependence of elliptic flow

• The number-of-constituent-quark scaling behavior across different 
collision systems at different energies is also predicted by this estimator

• AMPT explains the data to a reasonable extent from low- to 
intermediate-but deviates for  GeV/c

• Model and estimation technique dependency on training

• Particle kinematics information at freeze-out as input 
• Event-by-event predictions for the flow coefficient
• Centrality, , and meson-baryon dependent predictions
• Applicable to both RHIC and LHC energies
• Scalable model, can be extended to other physical 

observables in heavy-ion collisions
• Faster and more efficient prediction
• Robust to noisy simulation 
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