Choose your Diffusion
Efficient and flexible ways to accelerate diffusion (DM/CFM) in HEP
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* The study focuses mostly on Score Matching, in = \

which the score function is solved by different

M Ot i Vat i O n choices of SDE/ODE. How we could effectively

accelerate the generative model, by replacing only

parts of that.

* Backward process (training-free):

We have adopted almost all mainstream samplers/schedulers to ,
do comprehensive comparisons on both shower cells e Forward process (faster divergence):

(CaloChallenge) and jet constituents (/etNed) Effective way to mitigate the challenging optimization: Denoiser

function with preconditioning parameters, weighted by min-
SDE

ODE Signal-to-Noise ratio (min-SNR)
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[ndistinguishable high-level features for shower from cell-level generations How about replacing the backbone for the model? Changing

] A — eom — eom — eson flow matching with Unet/Transformer backbone to GBDT,
Geantd Geantd ,r'!‘ Geantd g; -------- Geantd | \ e Geantd | \ e Geant4
which latter has much faster training and inference time.
| ‘ | ‘ _ Is this even possible?? YES! (BUFF: BDT based-ultra-fast
—— = — . flow matching.) Few mins training, below millisecond
e O generation time, could replace most flow-based model.
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