A deep learning method for the γ -ray identification WITH THE DAMPE SPACE MISSION

Jennifer Maria Frieden*¹, Loïs Niggli¹, Chiara Perrina¹

INSTITUTE OF PHYSICS, ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL), CH-1015 LAUSANNE, SWITZERLAND EUCAIFCON 2024, AMSTERDAM, THE NETHERLANDS *JENNIFER.FRIEDEN@EPFL.CH

THE DARK MATTER PARTICLE EXPLORER (DAMPE)

- Satellite on a sun-synchronous low Earth orbit (\sim 500 km altitude) since December 2015^[1]
- Main goals: Cosmic-ray spectrum and composition measurement, indirect search for DM signatures in e^++e^- and γ spectra, high-energy γ -ray astronomy
- Consists of 4 subdetectors:
 - Plastic Scintillator Detector
 - Silicon-Tungsten tracKer-converter
 - Bismuth Germanium Oxide calorimeter
 - NeUtron Detector

MOTIVATIONS

- **I**st step of every γ -ray analysis: selection of γ -ray events
- Most abundant cosmic-ray component: protons
- Main difference between γ -rays and protons: **shower topology** in the BGO

for image processing, object classification and pattern recognition^[2]

CNN PARAMETER OPTIMISATION

CNN INPUT: BGO IMAGES

- Images of Monte-Carlo (MC) protons and MC γ -rays crossing the BGO: BGO consists of 14 layers (7 in XY plane and 7 in YZ plane), each containing 22 bars
- Preliminary cut-based selection:
- **1** Reconstructed energy in the BGO 1 GeV $\leq E_{reco} \leq 300$ GeV
- 2 Shower core contains at least 90% of E_{reco}
- 3 Shower axis reconstructed with BGO passes through PSD

■ The best architecture is selected based on the ROC curves: $(TPR, FPR) \longrightarrow (1, 0)$ (True Positive Rate and False Positive Rate)

FINAL CNN MODEL PERFORMANCE

- The steps in the training are due to the adaptive learning rate
- The classifier score of type sigmoid attributes scores from 0 to 1: the closer to 1 (0), the higher the probability it is a γ -ray (proton)

FINAL CNN ARCHITECTURE

- Leaky Rectifying Linear Unit (ReLU) is used as activation function for the hidden layers: $f(x) = \max(\alpha x, x)$
- Dropout rates added after FCL 1 and 2
- Sigmoid logistic function is used for the output layer

CNN CLASSIFICATION EFFICIENCY

- This method significantly outperforms all the existing algorithms, both in γ -ray efficiency and proton rejection
- This method is slated to be employed in the upcoming DAMPE γ -ray analysis

- ---

MC γ -ray

MC Proton

- CNN linear

CNN MODEL VALIDATION

- Weight the MC distributions accordingly to their expected flux
- Scale flight data to the regions where MC γ (p) are dominant
- Use output without logistic sigmoid function at the end (unbounded output score)
- A selection is applied to the flight data to reject electrons (dedicated boosted-decision-tree model) and particles with charge $|Z| \ge 2$ (PSD charge) and to reject all the events collected when the satellite is in the South Atlantic Anomaly

REFERENCES

- C. Perrina et al., Performance of the DAMPE silicon-tungsten tracker-converter during the first 5 years of in-orbit operations, 15-22th.07.2021
- Z Keiron O'Shea and Ryan Nash, An Introduction to Convolutional Neural Networks, 02.12.2015

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the Swiss National Science Foundation (SNSF-PZ00P2_193523).