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THE DARK MATTER PARTICLE EXPLORER (DAMPE) MOTIVATIONS

m Satellite on a sun-synchronous low Earth
orbit (~ 500 km altitude) since
December 2015l

m Main goals: Cosmic-ray spectrum and
composition measurement, indirect
search for DM signatures in et+e~ and ~
spectra, high-energy ~-ray astronomy

m Consists of 4 subdetectors:
m Plastic Scintillator Detector
m Silicon-Tungsten tracKer-converter

m Bismuth Germanium Oxide
calorimeter

CNN

m st step of every v-ray analysis: selection of ~-ray events
m Most abundant cosmic-ray component: protons
m Main difference between ~-rays and protons: shower topology in the BGO

v-ray event Proton event
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— Convolutional Neural Network (CNN): Class of neural networks, very efficient

for image processing, object classification and pattern recognitionl?!

PARAMETER OPTIMISATION

m The best architecture is selected based on the ROC curves:
(TPR, FPR) —> (1, 0) (True Positive Rate and False Positive Rate)
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m Images of Monte-Carlo (MC) protons and MC ~-rays crossing
the BGO: BGO consists of 14 layers (7 in XY plane and 7 in YZ
plane), each containing 22 bars

m Preliminary cut-based selection:
Reconstructed energy in the BGO 1 GeV < Ejeco < 300 GeV
Shower core contains at least 90% of Ereco
Shower axis reconstructed with BGO passes through PSD

Input: 14 x 22 pixel image
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FINAL CNN MODEL PERFORMANCE

m The steps in the training are due to the adaptive learning rate

m The classifier score of type sigmoid attributes scores from 0 to 1:
the closer to 1 (0), the higher the probability it is a v-ray (proton)

| 0ss evolution Classifier score
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FINAL CNN ARCHITECTURE

m Leaky Rectifying Linear Unit (RelLU) is used as activation
function for the hidden layers: f(x) = max(ax, x)

m Dropout rates added after FCL 1 and 2

m Sigmoid logistic function is used for the output layer
120 neurons 60 neurons

64 filters
32 filters :

1 neuron

Conv2d
3x3

CNN cLASSIFICATION EFFICIENCY

m This method significantly outperforms all the existing algorithms,
both in y-ray efficiency and proton rejection

m This method is slated to be employed in the upcoming DAMPE
~-ray analysis

— train loss
— val loss
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CNN MODEL VALIDATION

m Weight the MC distributions accordingly to their expected flux
m Scale flight data to the regions where MC ~ (p) are dominant
m Use output without logistic sigmoid function at the end (unbounded oufput score)

m A selection is applied to the flight data to reject electrons (dedicated boosted-decision-tree
model) and particles with charge |Z] > 2 (PSD charge) and to reject all the events collected

when the satellite is in the South Atlantic Anomaly

Data Entries: 21204
| IMC Entries: 1008714 + 3600713
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