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The DArk Matter Particle Explorer (DAMPE)

Satellite on a sun-synchronous low Earth
orbit (∼ 500 km altitude) since
December 2015[1]

Main goals: Cosmic-ray spectrum and
composition measurement, indirect
search for DM signatures in e++e− and γ
spectra, high-energy γ-ray astronomy

Consists of 4 subdetectors:

Plastic Scintillator Detector

Silicon-Tungsten tracKer-converter

Bismuth Germanium Oxide
calorimeter

NeUtron Detector

PSD

STK

BGO

NUD

Motivations

1st step of every γ-ray analysis: selection of γ-ray events
Most abundant cosmic-ray component: protons
Main difference between γ-rays and protons: shower topology in the BGO
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=⇒ Convolutional Neural Network (CNN): Class of neural networks, very efficient
for image processing, object classification and pattern recognition[2]

— True track — Reconstructed BGO track — STK tracks ××× STK clusters — Best STK track
γ-ray event Proton event

CNN Input: BGO images
Images of Monte-Carlo (MC) protons and MC γ-rays crossing
the BGO: BGO consists of 14 layers (7 in XY plane and 7 in YZ
plane), each containing 22 bars
Preliminary cut-based selection:
1 Reconstructed energy in the BGO 1 GeV ≤ Ereco ≤ 300 GeV
2 Shower core contains at least 90% of Ereco
3 Shower axis reconstructed with BGO passes through PSD
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Final CNN architecture
Leaky Rectifying Linear Unit (ReLU) is used as activation
function for the hidden layers: f (x) = max(αx , x)
Dropout rates added after FCL 1 and 2
Sigmoid logistic function is used for the output layer

32 filters
64 filters

120 neurons 60 neurons

1 neuron

FCL
Conv2d

3x3

Conv2d
3x3

CNN parameter optimisation
The best architecture is selected based on the ROC curves:
(TPR, FPR) —> (1, 0) (True Positive Rate and False Positive Rate)
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Final CNN model performance

The steps in the training are due to the adaptive learning rate
The classifier score of type sigmoid attributes scores from 0 to 1:
the closer to 1 (0), the higher the probability it is a γ-ray (proton)
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CNN classification efficiency

This method significantly outperforms all the existing algorithms,
both in γ-ray efficiency and proton rejection
This method is slated to be employed in the upcoming DAMPE
γ-ray analysis
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=⇒ Convolutional Neural Network (CNN): Class of neural networks, very efficient
for image recognition, object classification and pattern recognition[2]

— True track — Reconstructed BGO track — STK tracks × STK clusters — Best STK track
γ-ray event Proton event

CNN Input: BGO images
Images of Monte-Carlo (MC) protons and MC γ-rays crossing
the BGO: BGO consists of 14 layers (7 in XY plane and 7 in YZ
plane), each containing 22 bars
Preliminary cut-based selection: 1 ≤ Ereco ≤ 300 GeV,
electromagnetic shower shape selection and shower axis
reconstructed with BGO passes through PSD
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Final CNN architecture
Leaky Rectifying Linear Unit (ReLU) is used as activation
function for the hidden layers: f (x) = max(αx , x)
Dropout rates added after FCL 1 and 2
Sigmoïd logistic function is used for the output layer
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CNN parameter optimisation
The best architecture is selected based on the ROC curves:
(TPR, FPR) —> (1, 0) (True Positive Rate and False Positive Rate)
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Final CNN model performance

The steps in the training are due to the adaptive learning rate
The classifier score of type sigmoïd attributes scores from 0 to 1:
the closer to 1, the higher probability it is a γ-ray ( 0 → proton)

Classifier scoreLoss evolution
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CNN model validation
Weight the MC distributions accordingly to their expected flux
Scale flight data to the regions where MC γ (p) are dominant
Use output without logistic sigmoid function at the end (unbounded
output score)
A selection is applied to the flight data to reject electrons (dedicated
boosted-decision-tree model) and particles with charge |Z | ≥ 2 (PSD
charge) and to reject all the events collected when the satellite is in
the South Atlantic Anomaly

Data Entries: 21204
MC Entries: 1008714 + 3600713
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Outlook
This method significantly outperforms all the existing algorithms, both in γ-ray efficiency
and proton rejection
This method is slated to be employed in the upcoming DAMPE γ-ray analysis
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CNN model validation
Weight the MC distributions accordingly to their expected flux
Scale flight data to the regions where MC γ (p) are dominant
Use output without logistic sigmoid function at the end (unbounded output score)
A selection is applied to the flight data to reject electrons (dedicated boosted-decision-tree
model) and particles with charge |Z | ≥ 2 (PSD charge) and to reject all the events collected
when the satellite is in the South Atlantic Anomaly
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=⇒ Convolutional Neural Network (CNN): Class of neural networks, very efficient
for image recognition, object classification and pattern recognition[2]

— True track — Reconstructed BGO track — STK tracks × STK clusters — Best STK track
γ-ray event Proton event

CNN Input: BGO images
Images of Monte-Carlo (MC) protons and MC γ-rays crossing
the BGO: BGO consists of 14 layers (7 in XY plane and 7 in YZ
plane), each containing 22 bars
Preliminary cut-based selection: 1 ≤ Ereco ≤ 300 GeV,
electromagnetic shower shape selection and shower axis
reconstructed with BGO passes through PSD
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Final CNN architecture
Leaky Rectifying Linear Unit (ReLU) is used as activation
function for the hidden layers: f (x) = max(αx , x)
Dropout rates added after FCL 1 and 2
Sigmoïd logistic function is used for the output layer
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The best architecture is selected based on the ROC curves:
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Weight the MC distributions accordingly to their expected flux
Scale flight data to the regions where MC γ (p) are dominant
Use output without logistic sigmoid function at the end (unbounded
output score)
A selection is applied to the flight data to reject electrons (dedicated
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This method significantly outperforms all the existing algorithms, both in γ-ray efficiency
and proton rejection
This method is slated to be employed in the upcoming DAMPE γ-ray analysis
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