Weak supervision for quark/gluon tagging in CMS Open Data

Matthew Dolan, John Gargalionis, **Ayodele Ore**

Motivation

When produced at high energy, quarks and them hard to distinguish at LHC.

Deep neural networks are powerful jet classi of simulation that suffer large theoretical unc

Weakly-supervised classifiers may avoid this issue by training on real data using unlabelled mixtures [1].

Data

We use the 2011 CMS Open dataset, which includes both real collisions at 7 TeV, as well as full Monte Carlo (MC) simulation.

To serve as mixtures M_1 and M_2 , we select *Z***+***jet* and *dijet* respectively.

We use the simulated dijet sample as a labelled quark/gluon dataset.

Performance

Full supervision is best on MC, but what about on data? We need to know f_1 , f_2 to answer this.

Jet Topics [2] provides a datadriven estimate. Assuming 'mutual irreducibility':

The ratios can be approximated by classifiers.

Dataset	Total events	Quarks	Gluons
Data $[Zj]$	$41,\!773$		
$\mathrm{Data}\left[jj ight]$	$82,\!162$		
$\mathrm{MC}\left[Zj ight]$	$95,\!324$	$70,\!568$	24,756
MC[jj]	$3,\!064,\!713$	$868,\!556$	$2,\!196,\!157$

We train 3 classifiers: **Data CWoLa:** Z+jet vs dijet (data) **MC CWoLa:** Z+jet vs dijet (sim) Fully Supervised: Quark vs Gluon (dijet sim)

	Quark fraction		
Method	$\operatorname{Data}\left[Zj ight]$	$\operatorname{Data}\left[jj ight]$	
MC labels	0.740	0.301	
Jet Topics	0.651	0.273	
Topics $+$ MC	0.784	0.329	

While the absolute discrimination power depends on the choice of fractions, the rankings are robust.

The data-trained classifier appears to be the best guark/gluon discriminator in data.

With estimated f₁, f₂, we can train a generative model to **extract** pure quark/ gluon distributions from mixed training samples [3].

We train a normalising flow in this way. It can then be used for generative classification, and to smooth statistical fluctuations.

TopicFlow

[1] Metodiev et al. JHEP10(2017)174 [2] Metodiev et al. Phys.Rev.Lett.120,241602 [3] AO and MD PhysRevD.107.114003