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Bayesian neural network approximation Probabilistic random forest
Bayesian neural networks (BNN) [1] are a Bayesian approach to artificial neural We also consider the Probabilistic Random Forest
networks. The calculation of posterior probabilities for the weights of the network, given (PRF) method [4] where a modified approach to the
some observed data, is proposed to obtain uncertainty measures, but it generally standard Random Forest algorithm is taken. Random
becomes intractable for a network with more than one hidden layer. An approximation Forest is an ensemble method where several decision
resorting to dropout is presented in [2] and used in this work. Two results from the trees (a non-parametric model) are trained to fit some
reference allow us to estimate the expected prediction of a BNN and its variance using data. Standard decision trees are trained to fit some
a regular multilayer perceptron (MLP) with dropout applied. data, classifying events in classes according to the
1 T values of their input features. PRF considers these
P ] — — Wt (5 * 7 2 features as random variables and calculates the
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of obtaining a final class for the event. Since it provides

output probabilities we can obtain variability measures
L y*]" E[y*] — Varg (y+jx) [y"] for the prediction.
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Local ensembles P

Another approach to obtaining uncertainty measures when predicting with a neural
network is using the Local Ensembles method [3]. This algorithm estimates the
variability of a test observation's prediction when varying the model within a set that
fits the training data equally well. It relies on the calculatiga, of the p.red.icti.
gradient with respect to the parameters of the model and t essian of the
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Proposition 1.1 Let Ay be the projection of a random perturbation with mean zero and cov-
ariance proportional to the identity €-1 into the ensemble subspace spanned by {f(j) - m}.
Let Pn be the linearized change in prediction induced by the perturbation

Pa (') := gou(2)) " Ag = (', 0 x +1y) — §(z’, 0%)
then Eqn(x)) = e 12 SD(Pa(z)).
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(a) Local Ensembles (b) Probabilistic random forest (c) ANN with Dropout
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