
Fast Inference of Machine Learning Models with
SOFIE

Lorenzo Moneta, Sanjiban Sengupta, CERN, Geneva, Switzerland
Ioanna-Maria Panagou, University of Thessaly, Volos, Greece

root.cernSource Code

KEY REFERENCES
[1] DeepMind. Graph Nets Library. URL: https://github.com/google-deepmind/graph_nets.

[2] LorenzoMoneta Sitong An et al. “SOFIE: C++ CodeGeneration for Fast Inference of Deep LearningModels in ROOT/TMVA”.
In: Journal of Physics: Conference Series 2438.1 (Feb. 2023), p. 012013. DOI: 10.1088/1742- 6596/2438/1/012013. URL:
https://dx.doi.org/10.1088/1742-6596/2438/1/012013.

ACKNOWLEDGEMENTS MORE INFORMATION

Lorenzo Moneta
CERN
Lorenzo.Moneta@cern.ch

Motivation
▶ Popular machine learning libraries, such as Keras and PyTorch, provide

functionality for inference, but support only their own models and
are constrained by heavy dependencies

▶ SOFIE [2] creates standalone C++ inference code for a model with lim-
ited dependencies (only on BLAS libraries), which can be included in
any other C++ project.

▶ SOFIE supports several types of deep learning models, including now
message passing GNN.

▶ SOFIE can generate SYCL code that can run on various GPUs and is
dependent only on Intel MKL BLAS and portBLAS libraries.

Description
▶ SOFIE accepts input in the form of a pre-trained machine learning

model, presented in .onnx, .pt or .h5 format and transforms the input
model into an equivalent graph of operators.

▶ The code generation step produces a C++ header file with the infer-
ence function in C++ and a weight file in .dat or .root format.

SOFIE
Parser RModel

or

Input: Trained ML Model
(.onnx, .pt, .h5)

Parser: From ONNX (or Pytorch or
Keras) to SOFIE::RModel

Outputs

1. Weight File

2. C++ header file

▶ The generated code can be easily integrated in C++ applications
or compiled on the flight using the ROOT JIT capabilities of CLING and
used in Python code.

▶ The model can also be evaluated within ROOT RDataFrame.

ONNX Supported Operators
Operators implemented in ROOT CPU GPU

Perceptron (GEMM) ✓ ✓
Convolution (1D, 2D, 3D) ✓ ✓

DeConvolution (1D, 2D, 3D) ✓ ✓
Recurrent (RNN, GRU, LSTM) ✓

Activations (Relu, Selu, Swish, LeakyRelu, Tanh,...) ✓ ✓
Pooling (MaxPool, AveragePool,...) ✓ ✓

BatchNorm, LayerNorm ✓ ✓
Binary Op (Add, Sum, Mul, Div,..) ✓ ✓

Unary Op (Neg,Sqrt,Exp,..) ✓ ✓
Reshape, Flatten, Concat, Reduce, Gather ✓ ✓
Transpose, Slice, Squeeze, Unsqueeze ✓ ✓

Custom operator ✓

Support for Missing operators can be added on user requests

GNN Support
▶ SOFIE can generate C++ code from GNN models based on the Graph

Nets library [1]

Benchmarks on CPU
▶ We tested 8 different deep learning models with various complexity.
▶ We compare the CPU time to evaluate the models using the C++ code

generated by SOFIE or by using directly ONNXRuntime.

▶ We tested also the CPU performance for GNN models varying the
number of nodes and edges on Linux and MacOS architectures

Benchmarks on GPU
▶ We tested 6 different configurations for various platforms and execu-

tion backends using the SYCL code extension of SOFIE.

▶ There is significant correlation between performance improve-
ment and model size.
▶ Models with fewer layers and lower computational complexity, such as Lin-

ear_64 exhibit inferior performance on GPU compared to models with more
extensive layer counts, such as Convolutional or resnet models.

▶ The performance for the samemodel (resnet18v1_81) varies consider-
ably with the input batch size.


