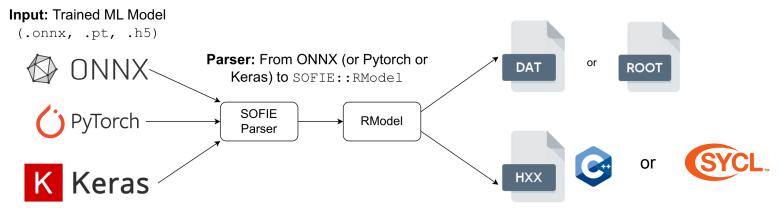


Fast Inference of Machine Learning Models with SOFIE

Lorenzo Moneta, Ioanna Panagou, Sanjiban Sengupta

Machine Learning Inference in ROOT


SOFIE: System for Optimised Fast Inference code Emit

- Input: trained ML model file
 - ONNX: Common standard for ML models
 - Tensorflow/Keras and PyTorch models (with reduced support than ONNX)
 - Since 6.32 support message passing GNNs from DeepMind's Graph Nets

- Output: generated C++ code
 - Easily invokable directly from C++ (plug-and-use)
 - Minimal dependency (on BLAS only)
 - Can be compiled at run time using ROOT Cling JIT and can be used in Python.

Outputs

1. Weight File

GPU Extension of SOFIE

Extended SOFIE functionality to produce GPU code using SYCL

```
// generate SYCL code internally
model.GenerateGPU();
// write output header and data weight file
model.OutputGeneratedGPU();
```


model.hxx

- Minimise overhead of data transfers between host and device
- Manage buffers efficiently, declaring them at the beginning
- Use libraries for GPU Offloading: GPU BLAS from Intel one API and PortBLAS for other GPUs
- Fuse operators when possible in a single kernel
- Replace conditional check with relational functions

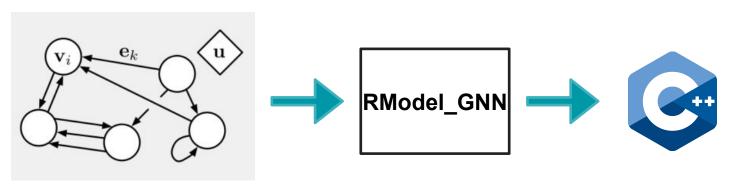
```
#include "Model.hxx"

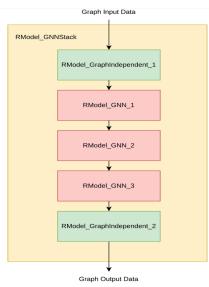
// create session class

TMVA_SOFIE_Model::Session
ses("model_weights.dat");

//— event loop
for (ievt = 0; ievt < N; ievt++) {
    // evaluate model: input is a C float array
    float * input = event[ievt].GetData();
    auto result = ses.infer(input);</pre>
```

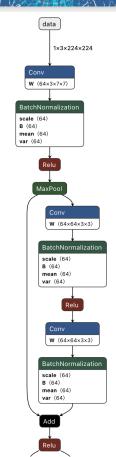
Inference code needs to be linked against oneAPI MKL libraries and compiled using SYCL compiler




SOFIE GNN Support

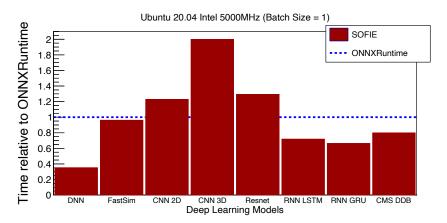
- ► Since ROOT version 6.32 support inference of **GNN**s
 - parsing available for GNNs built from DeepMind's Graph Net library

 supporting a LHCb model for full event interpretation (arXiv:2304.08610)

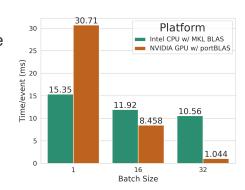


ONNX Supported Operators

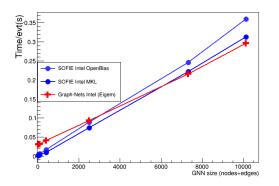
Operators implemented in ROOT	CPU	GPU
Perceptron: Gemm	✓	✓
Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu, Swish	✓	✓
Convolution and Deconvolution (1D, 2D and 3D)	✓	✓
Pooling: MaxPool, AveragePool, GlobalAverage	✓	✓
Recurrent: RNN, GRU, LSTM	✓	✓
Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity	✓	✓
Layer Binary operators: Add, Sum, Mul, Div	✓	✓
Other Layer operators: Reshape, Flatten, Transpose, Squeeze, Unsqueeze, Slice, Concat, Reduce, Gather	✓	✓
BatchNormalization, LayerNormalization	✓	✓
Custom operator	✓	

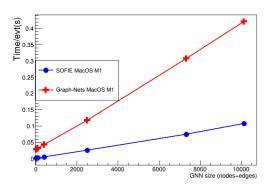

- current CPU support available in ROOT 6.30
- GPU/SYCL is implemented in a ROOT PR

Benchmarking Time of Inference



CPU event performance of **SOFIE** vs **ONNXRuntime**


GPU (SYCL) vs CPU performance


 using a Resnet model with varying batch size

CPU time for **GNN inference**

varying GNN size (node + edges)

Summary

- ▶ **SOFIE**, fast and easy-to-use inference engine for Deep Learning models, is available in ROOT
 - Can be easily integrated with other ROOT tools (RDataFrame) for ML inference in end-user analysis
 - Supporting several ONNX operators and also GNNs
 - A prototype implementation for GPU using SYCL has been developed
 - plan to extend to CUDA and/or ALPAKA following some interest by experiments to deploy in their GPU-based trigger system
- Future developments according to user needs and received feedback
 - aim to support the latest production model of experiments (GNN and transformers)
 - models used for fast simulations (GAN and VAE)

Useful Links

- Examples and tutorials are available in the tutorial/tmva directory
 - ► C++ (TMVA_SOFIE_*.C) and Python examples (TMVA_SOFIE_*.py)
- Link to **SOFIE code** in current ROOT master in GitHub
- Example notebooks on using SOFIE:
 - https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
- Link to PR implementing SYCL code generation
- Link to benchmarks in *rootbench* repository