

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

The Landscape of Unfolding with Machine Learning

N. Huetsch, J. Mariño Villadamigo, A. Shmakov, S. Diefenbacher, V. Mikuni, T. Heimel, M. Fenton, K. Greif, B. Nachman, D. Whiteson, A. Butter, T. Plehn arXiv: 2404.XXXX

SPONSORED BY THE

of Education and Research

Federal Ministry

Inverting the LHC Simulation Chain

Machine learning methods allow for unbinned, high-dimensional unfolding

ML-based Unfolding

Reweighting based: Omnifold

 $p_{gen} \rightarrow p_{unfold}$

 $p(x_{part} | x_{reco})$

Distribution Mapping

$$p_{data} \rightarrow p_{unfold}$$

Conditional Generative Unfolding

Results I: Unfolding to pre-detector

Results II: Unfolding to partons

