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Motivation
Particle physicists simulate collisions, allowing for a proper statistical inter-

pretation of experimental data. The energy depositions of particles inside a

calorimeter (as part of the detector simulation) are a crucial aspect of the sim-

ulation chain.

The state-of-the-art simulation code for detector simulation is GEANT4. It

tracks each particle, as well as secondary particles that are produced in show-

ers, through the entire detector volume. It is accurate, but slow. Deep genera-

tivemodels provide fast surrogates which could speed up detector simulation.

We present different normalizing-flow-based approaches.

Normalizing Flows
Normalizing Flows learn a bijective mapping f (x) = z between a high-dimen-

sional prior distribution π(z) and a complicated data distribution p(x) via the
change of coordinates formula:

p(x) = π(f (x))
∣∣∣∣det ∂f (x)
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They can be trained by maximizing the log-likelihood p(x) of the training data
and act as generative model when run in the inverse direction x = f −1(z).

The Fast Calorimeter Simulation Challenge 2022
The fast Calorimeter Simulation Challenge 2022 [1] has provided 4 datasets of

simulated calorimeter showers in increasing dimensionality.

1. dataset 1 — γ: 121k showers,

368 voxels

2. dataset 1 — π+: 120.8k showers,

533 voxels

3. dataset 2 — e−: 100k showers,

6,480 voxels

4. dataset 3 — e−: 100k showers,

40,500 voxels
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1: Direct Approach: CaloFlow & CaloINN
All of these approaches split learning p(I|Einc) into 2 steps.

1. learns p1(E1, E2, ... , En|Einc) → the energy split among layers

2. learns p2(Î|E1:n, Einc) → the normalized shower in all layers.

CALOFLOW [2, 3] is based on autoregressive flows, which have a fast and slow

direction of evaluation. When using the Masked Autoregressive Flow (MAF),

it can be trained by maximizing the log-likelihood but it is slow in sampling.

When using the Inverse Autoregressive Flow (IAF), it is faster in sampling, but

can only be trained via Probability Density Distillation from the MAF version.

CALOINN [4] is based on coupling-layers, which are equally fast in both direc-

tions, albeit need more bijector building blocks to capture all correlations.

Dataset Method
AUC ↓ generation time

low-level high-level per shower [ms] ↓

1: γ

GEANT4 0.499(2) 0.499(3) O(104)
CALOFLOWMAF [5] 0.733(3) 0.636(2) 45.5 ± 1.10
CALOFLOW IAF [5] 0.761(2) 0.667(4) 0.79 ± 0.01

CALOINN [4] 0.626(4) 0.638(3) 0.51 ± 0.03

1: π+

GEANT4 0.609(4) 0.558(2) O(104)
CALOFLOWMAF [5] 0.845(2) 0.797(2) 70.1 ± 1.00
CALOFLOW IAF [5] 0.884(2) 0.827(4) 1.00 ± 0.02

CALOINN [4] 0.784(2) 0.732(2) 0.44 ± 0.01

2: e− GEANT4 0.500(2) 0.499(2) O(105)
CALOINN [4] 0.743(2) 0.865(3) 1.18 ± 0.03

2: Autoregressive Decomposition: iCaloFlow [6]
Datasets 2 and 3 are too high-dimensional to be learned by a single normaliz-

ing flow.

Split learning p(I|Einc) into 3 steps, leveraging the detector geometry.

1. learns p1(E1, E2, E3, ... , E45|Einc) → the energy split among layers

2. learns p2(I1|E1, Einc) → the shower in the first layer

3. learns p3(In|In−1, n, En, En−1, Einc) → the shower in layer n, given
layer n − 1
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Flow 1: p1(Ei|Einc)

Flow 2: p2(Î1a|Einc, E1)

Flow 3: p3(Îia|Einc, Ei, Ei−1, Î(i−1)a, i)

Dataset Method
AUC ↓ generation time

low-level high-level per shower [ms] ↓

2: e−
GEANT4 0.500(2) 0.499(2) O(105)

iCALOFLOWMAF 0.763(4) 0.837(5) 829.4 ± 16.7
iCALOFLOW IAF 0.819(4) 0.886(3) 13.2 ± 0.5

3: e−
GEANT4 0.498(2) 0.500(3) O(105)

iCALOFLOWMAF 0.911(3) 0.962(1) 5596.2 ± 56.0
iCALOFLOW IAF 0.891(3) 0.971(1) 16.7 ± 0.5

Evaluation Metrics
Shower quality is measured by training a neural classifier to distinguish

generated samples from GEANT4 simulation. A lower AUC, i.e. a more

confused classifier, indicates a generative model that better reproduces the

distribution of GEANT4 showers. We investigate classifiers based on low-level

features (calorimeter voxel) and high-level feature (observables like energies

and shower shapes).

Generation speed is measured by generating a sample of the size of the train-

ing data with batch size 100 on a NVIDIA A100-SXM4-40GB.
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