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Ground state optimisation

Many characteristics of a quantum state are embodied by the wave-

function, ψ. One can model a wavefunction by introducing an ansatz

for computing the amplitude of each eigenstate.

In this work we will compare two approaches for modelling the ground

state wavefunction of the transverse field Ising model (TFIM): varia-

tional quantum eigensolver (VQE) and variational Monte Carlo (VMC)

using a restricted Boltzmann machine (RBM) anstaz.

The TFIM Hamiltonian, with a variable strength transverse field, h, is

H =
∑
i

σziσ
z
i+1 + h

∑
i

σxi (1)

We will also raise the question of whether the ground state energy

alone is a sufficient loss function and offer up non-stabiliserness (a met-

ric of quantum complexity) as a second quantity to keep in mind.

Non-stabiliserness as a metric of quantum
complexity

In the fight for supremacy between quantum and classical computing,

various metrics of quantum complexity were conceived to try and es-

timate a task’s ability to be classically simulated; it assumed that highly

quantum complex problems would require quantum solutions. Non-

stabiliserness, often known as magic, is one such measure.

The Gottesman-Knill theorem states that any stabiliser operation act-

ing on a stabiliser state can be efficiently simulated by a classical com-

puter [1]. Therefore, the distance between the state in question and

a purely stabiliser state is the non-stabiliserness of the system: the

measure of how ‘quantum’ the state is.

We can compute the non-stabiliserness using the stabiliser Renyi-2

entropy (SRE),M2(|ψ〉), defined as [2]

M2(|ψ〉) = − log
∑
P∈PN

〈ψ|P |ψ〉4

2N
. (2)

Here, PN is the complete set of Pauli strings of length N .

We are interested in how the SRE of the solutions from the quantum

and classical algorithms compare.

Variational quantum eigensolver

|ψin〉

Rx(θ1) Ry(θ4) Rz(θ7)

|ψθ〉Rx(θ2) Ry(θ5) Rz(θ8)

Rx(θ3) Ry(θ6) Rz(θ9)

Figure 1. An example circuit that acts as the ansatz for the variational

quantum eigensolver. Ri(θj) is a rotation gate in the i axis by angle θj.

In the VQE algorithm, proposed in [3], the costly task of preparing a

high-dimensional, parameterised wavefunction, ψθ, is handled by a pa-

rameterised quantum circuit. Figure 1 is one such example; an easily

prepared input state is fed into the circuit, the output is a trial wave-

function. One can compute the expectation of the Hamiltonian with

respect to this wavefunction and estimate its energy. Therefore, the

ground state energy is treated as the loss function, and minimised by

varying θ. The optimisation procedure is ceased when one is in some

optimisation minima.

Phrased like this, it begs the question as to whether this loss function

alone, paired with this stopping criterion, is enough.

Restricted Boltzmann machine

Similarly, one can represent the wavefunction as the output of a neural

network, in this case, an RBM as depicted in Figure 2.

...

...

Figure 2. An example of a restricted Boltzmann machine, a function

approximator, that we are using as an ansatz for the wavefunction.

This algorithm uses Monte Carlo sampling to estimate the expectation

value of the Hamiltonian with respect to a set of RBM parameters.

Thus, similar to in the VQE regime, we can tune the parameters of the

RBM such that the wavefunction it represents minimises the ground

state energy. For more details see [4].

Results

Figure 3 shows the non-stabiliserness and energies of the estimations

of the ground state from the VQE and RBM approaches.

Despite theVQE algorithm being executed at least partially on a quan-

tum device, both methods perform similarlywhen it comes to arriving

at a ground state that has the correct energy and quantum complexity.
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Figure 3. Comparison between: the VQE algorithm and VMC using

an RBM ansatz, applied to finding the ground state of the TFIM with

8 qubits. Shown are the SRE (top) and ground state energy (middle)

of the ground states found by each model. The differences between

these approximate ground states and the exact solution (found

through exact diagonalisation) are shown in the bottom pane.
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