Embedded Neural Networks on FPGAs for Real-Time Computation of the Energy Deposited in the ATLAS Liquid Argon Calorimeter

Raphaël BERTRAND

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

- HL-LHC high pileup \rightarrow OF performance degradation
- Neural networks are investigated as an alternative solution to the OF algorithm.

Neural network structure

- CNNs and RNNs are designed to compute deposited energy.
- NNs can correct the degradation of the energy resolution.

Optimization of the RNN

Firmware implementation

RNN with 8 units and 5 samples as input can be upgraded :

Increase nb of units
 better resolution

overall

- Increase nb of input samples

better resolution with overlapped pulses

Increasing the number of units and input samples go with more computations and it can't be implemented.

- Dense Layer as input of the 1st RNN cell for input samples before the energy deposit.
 - RNN cells to compute the amplitude on the peak
 - Dense to correct for the pileup

LASP demonstrator built with Stratix-10

- prototype with Agilex 7 ongoing

Each FPGA needs to reconstruct the energy for 384 channels :

- Impossible to implement 384 NNs on the FPGA
 - Need multiplexing
 - Need higher frequency

LASP board demonstrator

RNN and CNN Implemented on Stratix-10

- CNN implemented on Agilex, RNN still in progress
- CNN directly implemented in VHDL, RNN Implemented first in HLS for fast prototyping and then optimized in VHDL
- Fits LAr requirements for both

FPGA	Network	Multiplex.	Detector cells	$f_{ m max}$	ALMs	DSPs
Stratix-10	RNN (HLS)	10	370	393 MHz	90 %	100%
	RNN (VHDL)	14	392	561 MHz	18%	66 %
	CNN (100 param.)	12	396	415 MHz	8 %	28 %
Agilex	CNN (100 param.)	12	396	539 MHz	4 %	13 %
	CNN (400 param.)	12	396	510 MHz	19%	50 %