Increasing the Model Agnosticity of Weakly Supervised **Anomaly Detection**

Thorben Finke¹ Joep Geuskens¹ Marie Hein¹ Parada Prangchaikul² Tobias Quadfasel² David Shih⁴ Mück¹ ¹TTK RWTH Aachen University ²IEP Universität Hamburg ³CDCS Universität Hamburg

Weakly supervised anomaly detection can be applied to resonance searches to find BSM physics.

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Gregor Kasieczka^{2,3} Michael Krämer¹ Alexander

Manuel Sommerhalder²

⁴NHETC Rutgers University

Increasing the Model Agnosticity of Weakly Supervised

Anomaly Detection

Marie Hein¹ Gregor Kasieczka ^{2,3} Michael Krämer ¹ Alexande Manuel Sommerhalder bias Quadfasel ² David Shih ⁴

Research Training Group

Physics of the Heaviest

Particles at the LHC

- To find new physics, improve largely model agnostic searches, e.g., resonance searches → Use pattern recognition capability of machine learning in high dimensional feature space to ain higher sensitivity Problem: Currently many papers use only 4 high level features ("baseline" feature set)
- enchmark dataset (LHCO R&D dataset [1]) For more model agnostic setup need to be able to use more feature
- Goal: Improve classifier setup for more high level features and low level features

Weakly supervised anomaly detection

Classification Without Labels (CWoLa) [2]

- $R_{\text{mixed}} = \frac{f_1 R_{\text{optimal}}(x) + (1 f_1)}{f_2 R_{\text{optimal}}(x) + (1 f_2)}, \quad \text{where} \quad R_{\text{optimal}}(x) = \frac{p_S(x)}{p_B(x)}$
- is the optimal classifier between signal and background distributions p_c → Mathematically equivalent as R_{mixed} monotonous in R_{optimal} oplication to resonance searches
- · Divide data into signal region (SR) and sideband (SB), when
- $p_{SD}(x) = p_S(x|m \in SR) + p_B(x|m \in SR)$ and $p_{SD}(x) = p_B(x|m \in SB)$
- for classification features x. • Construct "background template" from SB, ideally with $p(x) = p_B(x)$ → Here, we use idealized case to study classifier only

BDTs for high level features [3

Boosted Decision Trees (BDTs) are known to be very effective on tabular data, especially for sma datasets [4].

- 1. Few signal events → small effective datase
- . High level features → tabular data Classifier Setup
- NN: Ensemble of N fully conne
- BDT: Ensemble of N gradient boosted decision tree

Study: Uninformative features We study the class

Study: Additional physics-motivated feature We study datasets with more subjettiness-based fe

Extended set 2: 12 features, all slightly informative

• Extended set 3: 56 features, all slightly informativ

Graphs for low level features

Machine Learning background			
Graph Neural Networks can represent HEP data	50-		Sup IAD
n a permutation invariant manner. Architectures	40 -	1	MD
can incorporate symmetries directly. → Very successful on top tagging tasks	83/153 30		
Study: Top tagger on LHCO dataset	20.		
State of the art top taggers were studied on the	10		~
LHCO R&D dataset.	0		
 Modified LorentzNet architecture [5] found 	0.	0	0
to result in the best performance.			
 Performance drops sooner than observed 	Figure 4	1. SIC	2 cui

 Increased model agnosticity for anomaly detection can be ad the architecture and input features. → High level features can provide good difficult to achieve

Extended set 1: 10 features (baseline + 6 additional), some largely unin

Increasing the Model Agnosticity of Weakly Supervised **Anomaly Detection**

Thorben Finke¹ Joep Geuskens¹ Marie Hein¹ Parada Prangchaikul² Tobias Quadfasel² David Shih⁴ Manuel Sommerhalder² Mück¹ ¹TTK RWTH Aachen University ²IEP Universität Hamburg ³CDCS Universität Hamburg

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Gregor Kasieczka^{2,3} Michael Krämer¹ Alexander

⁴NHETC Rutgers University

Increasing the Model Agnosticity of Weakly Supervised

Anomaly Detection

Research Training Group

Physics of the Heaviest

Particles at the LHC

- Use pattern recognition capability of machine learning in high dimensional feature space
- ark dataset (LHCO R&D dataset [1] or more model agnostic setup need to be a

- where $R_{\text{optimal}}(x) = \frac{p_S(x)}{n_P(x)}$

- Here, we use idealized case to study classifier only

BDTs for high level features [

datasets [4]

- Few signal events → small effective datas
- Classifier Setur
- NN: Ensemble of N full BDT: Ensemble of N gradient boosted decision

Study: Uninformative feature

e 2. SIC curves of IAD NN/BDT classifiers employing and 50 Gaussian features, ensembling of BDT increased to N = 100, otherwise N = 50.

Machine Learning background Graph Neural Networks can represent HEP data	50 -	Sup
in a permutation invariant manner. Architectures	40 -	- IAD
→ Very successful on top tagging tasks	83/1/53 30	
Study: Top tagger on LHCO dataset	20	
State of the art top taggers were studied on the	10	~
LHCO R&D dataset.	0.	
 Modified LorentzNet architecture [5] found 	0.0	
to result in the best performance.		
 Performance drops sooner than observed 	Figure 4.5	SIC cu

the architecture and input featur

- Study: Additional physics-motivated featu
- Ve study datasets with more subjettiness-base Extended set 1: 10 features (baseline + 6 additional), so · Extended set 2: 12 features, all slightly informative

Graphs for low level features

References

S. Gong, Q. Meng, J. Zhang, H. Qu, C. Li, S. Qian, W. Du, Z.-M. for jet tagging," JHEP, vol. 07, p. 030

Increasing the Model Agnosticity of Weakly Supervised **Anomaly Detection**

Thorben Finke¹ Joep Geuskens¹ Marie Hein¹ Parada Prangchaikul² Tobias Quadfasel² David Shih⁴ Manuel Sommerhalder² Mück¹ ¹TTK RWTH Aachen University ²IEP Universität Hamburg ³CDCS Universität Hamburg

To include more features, robustness against uninformative features is necessary, which is not present for NNs.

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Research Training Group Physics of the Heaviest

Particles at the LHC

Gregor Kasieczka^{2,3} Michael Krämer¹ Alexander

⁴NHETC Rutgers University

