
Weakly supervised anomaly detection can be applied to resonance searches to 
find BSM physics.
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Motivation

• To find new physics, improve largely model agnostic searches, e.g., resonance searches
: Use pattern recognition capability of machine learning in high dimensional feature space to
gain higher sensitivity

• Problem: Currently many papers use only 4 high level features (“baseline” feature set) on one
benchmark dataset (LHCO R&D dataset [1])
: For more model agnostic setup need to be able to use more features

Goal: Improve classifier setup for more high level features and low level features

Weakly supervised anomaly detection

Classification Without Labels (CWoLa) [2]

• Classifier between mixed datasets pi(x) = fi pS(x) + (1 ≠ fi) pB(x) with signal fractions fi

Rmixed =
f1 Roptimal(x) + (1 ≠ f1)
f2 Roptimal(x) + (1 ≠ f2)

, where Roptimal(x) = pS(x)
pB(x) (1)

is the optimal classifier between signal and background distributions pS/B.
: Mathematically equivalent as Rmixed monotonous in Roptimal

Application to resonance searches

• Divide data into signal region (SR) and sideband (SB), where

pSR(x) = pS(x|m œ SR) + pB(x|m œ SR) and pSB(x) = pB(x|m œ SB) (2)

for classification features x.
• Construct “background template” from SB, ideally with p(x) = pB(x|m œ SR)

: Here, we use idealized case to study classifier only
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Figure 1. Left: Sketch of weakly supervised classification setup. Right: Division of data into SR and SB for a resonance
search.

BDTs for high level features [3]

Machine Learning background
Boosted Decision Trees (BDTs) are known to be very effective on tabular data, especially for small
datasets [4].

1. Few signal events : small effective dataset
2. High level features : tabular data

Classifier Setup

• NN: Ensemble of N fully connected neural networks
• BDT: Ensemble of N gradient boosted decision trees

Study: Uninformative features
We study the classifiers by introducing uninformative features (features drawn from Gaussian noise),
which the NN is particularly sensitive to. The BDT’s performance is very robust, meaning that we can
add more features to an analysis.

Figure 2. SIC curves of IAD NN/BDT classifiers employing four baseline features and additional Gaussian features. For 30
and 50 Gaussian features, ensembling of BDT increased to N = 100, otherwise N = 50.

Study: Additional physics-motivated features
We study datasets with more subjettiness-based features.

• Extended set 1: 10 features (baseline + 6 additional), some largely uninformative
• Extended set 2: 12 features, all slightly informative
• Extended set 3: 56 features, all slightly informative

BDT robustness against uninformative features translates to being well-behaved with additional fea-
tures. Not present for NN.

Figure 3. SIC curves of IAD NN/BDT classifier with 4 feature baseline dataset and three extended feature sets.

Graphs for low level features

Machine Learning background
Graph Neural Networks can represent HEP data
in a permutation invariant manner. Architectures
can incorporate symmetries directly.
: Very successful on top tagging tasks

Study: Top tagger on LHCO dataset
State of the art top taggers were studied on the
LHCO R&D dataset.

• Modified LorentzNet architecture [5] found
to result in the best performance.

• Performance drops sooner than observed
for high level features.

Figure 4. SIC curves for supervised classifier and IAD on
low level features.

Conclusion

• Increased model agnosticity for anomaly detection can be achieved by careful consideration of
the architecture and input features.
: High level features can provide good performance with current state of the art technology
: Low level features are the more future-oriented approach but in the present still more
difficult to achieve

Figure 5. Maximum SIC for different signal injections
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Figure 1. Left: Sketch of weakly supervised classification setup. Right: Division of data into SR and SB for a resonance
search.
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Usual features for weak supervision 
papers 

 not very model agnostic⇒

LHCO R&D dataset 

Background: QCD dijets 
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To include more features, robustness against uninformative features is necessary, 
which is not present for NNs. 


