

Introduction

- PINNGraPE is a PyTorch algorithm which does PE for a Gravitational-Wave (GW) signal's source thanks to a Physics-Informed Neural Network (PINN) [?].
- We solve (1) thanks to a Recurrent Neural Network (RNN) with a Runge-Kutta integrator at 4th order implemented inside.

$$\begin{aligned} \frac{df}{dt} &= \mathcal{F}[f, \eta, M_{tot}] \\ \mathcal{L} &= \frac{\beta_f}{N} \sum_{k=1}^{N} |f_k - f(t_k)| + \\ &+ \frac{\beta_t}{N} \sum_{k=1}^{N} |t_k - t(f(t_k))| + \\ &+ \frac{\beta_h}{N} \sum_{k=1}^{N} |h_k - h(f(t_k))| \end{aligned} \tag{2}$$

Results

Conclusions

- PINNGraPE is able to infer η and M_{tot} values with 10^{-2} relative error from frequency and strain data, implementing 1.5PN formalism.
- Near future steps:
 - to build a real dataset spanning a physical parameter space;
 - to test robustness against noise and glitches;
 - to extend the number of parameters to infer.
- (Not so) remote future step:
 - use of cWB real outputs.
 - apply PINNs approach to TOV equations, in order to constrain NS's equation of state.

Matteo Scialpi FuCAIFCon 2024 **PINNGraPE**