HOW CAN WE TURN CLASSIFIERS INTO ANOMALY DETECTORS?

Sascha Caron (Nikhef, Radboud U), José Enrique García Navarro (IFIC, CSIC-UV), María Moreno Llácer (IFIC, CSIC-UV), Polina Moskvitinaa (Nikhef, Radboud U), Mats Rovers (Radboud U., Nikhef), **Adrián Rubio Jiménez (IFIC, CSIC-UV)**, Roberto Ruiz de Austri (IFIC, CSIC-UV), Zhongyi Zhang (Bonn U.).

MOTIVATION AND STRATEGY

Motivation

- The most powerful architectures for supervised classification learn the physical information more efficiently.
- But... how can we turn them into anomaly detectors and how good are they?

Strategy

- Adaptation of 2-3 different classifier architectures with 3 methods to detect anomalies (8 models).
- No network optimisation (or minimal) was performed to avoid biases.

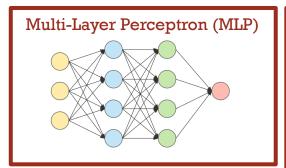
DarkMachines dataset

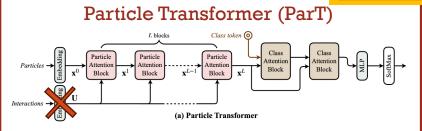
- Open data: Zenodo <u>link</u> to dataset from <u>anomaly score challenge</u>.
- Event generation: proton-proton collisions at 13 TeV.
- <u>Detector simulation</u>: simplified card for ATLAS detector at CERN.
- Reconstructed particles (objects): jets, b-tagged jets, charged leptons, photons.
- Low level variables: object type, the four-momentum of the objects and the missing transverse momentum of the event.

ARCHITECTURES AND TECHNIQUES

No pairwise interactions

https://arxiv.org/abs/2211.05143



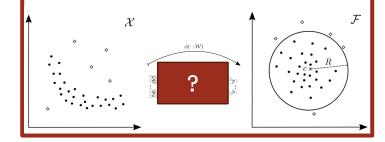


ParT+ SM couplings

- Pairwise interactions
 - ln(m²_{ij})
 - $ln(\Delta R_{ij})$
 - Physical information from Standard Model: couplings.

Deep Support Vector Data Description (dSVDD)

- Add an output layer with certain dimensions.
- Training: minimise distance to a centre in the hypersphere (anomaly score).
- Outliers are considered anomalies.
- Make <u>ensemble</u> for different dimensions.

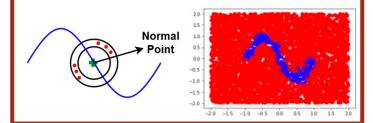


Deep Robust One-Class Classification (DROCC)

- Background is assumed to lie in a lowdimensional manifold.
- Anomalous background events are generated and their location in the manifold is searched with an adversarial training.

$$\sum_{i=1}^{n} [\ell(f_{\theta}(x_i), 1) + \mu \max_{\substack{\tilde{x}_i \in \\ N_i(r)}} \ell(f_{\theta}(\tilde{x}_i), -1)]$$

Weakly supervised implementation

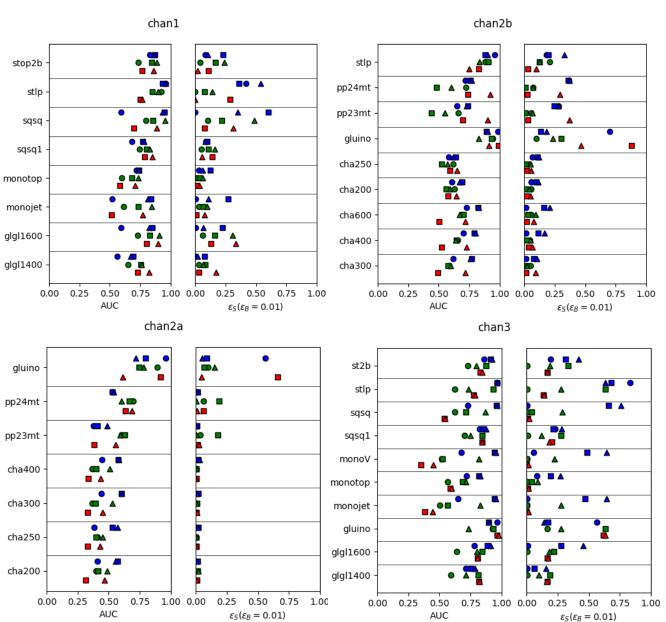


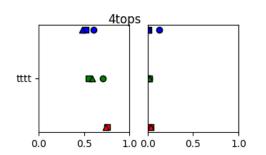
Discriminant distorsion detection (DDD)

- New technique developed for this study.
- Anomalies look like distorted background.
- Distorted training dataset is created:
 - Smearing kinematic variables with a gaussian.
 - Adding or removing objects.
- Train: discriminate distorted bkg vs bkg.
- Models with AUCs ~ 0.7-0.8 are picked up for testing on signals. Ensemble was made.

Developed

RESULTS AND CONCLUSIONS





- Shown that we can take a supervised classifier and transform it into a (good) anomaly detector.
- The best classifiers are -on average- better anomaly detectors: ParT+SM in this case.
- Similar performances among the 3 techniques.
 Compatible with anomaly score challenge.
- A recommendation could be to use dSVDD and DDD in combination (fully unsupervised).
- The new method DDD discriminates between data with and without distortions. This opens interesting future research directions.
- A more detailed recipe will be found in the paper (very soon in arXiv).

5 BAGA-UP

CHANNELS AND SIGNALS

- Channel 1 (214k SM and 38k BSM):
 - H_T ≥ 600 GeV.
 - E_{Tmiss} ≥ 200 GeV.
 - E_{Tmiss}/HT≥ 0.2 .
 - At least 4 (b)-jets with p_T > 50 GeV.
 - 1 (b)-jet with p_T > 200 GeV.
- Channel 2a (20k SM and 11k BSM):
 - E_{Tmiss} > 50 GeV.
 - $N_{lep} \ge 3$ (where $p_{Tlep} \ge 15$ GeV).
- Channel 2b (340k SM and 90k BSM):
 - E_{Tmiss} > 50 GeV.
 - $N_{lep} >= 2$ (where $p_{Tlep} > 15$ GeV).
 - HT > 50 GeV.
- Channel 3 (8.5M SM and 1M BSM):
 - E_{Tmiss} > 100 GeV.
 - $H_T > 600 \text{ GeV}$.

BSM process	Channel 1	Channel 2a	Channel 2b	Channel 3
$Z' + { m monojet}$	×	×		×
Z' + W/Z				×
$Z' + { m single\ top}$	×			×
Z' in lepton-violating $U(1)_{L_{\mu}-L_{\tau}}$		×	×	
R-SUSY stop-stop	×		×	×
 ∦-SUSY squark-squark	×			×
SUSY gluino-gluino	×	×	×	×
SUSY stop-stop	×			×
SUSY squark-squark	×			×
SUSY chargino-neutralino		×	×	
SUSY chargino-chargino			×	