Understanding galaxy clusters with Contrastive Learning

Urmila Chadayammuri EUCAIF 2024 | Amsterdam

They have a wide variety of core thermodynamic profiles

They have a wide variety of histories of AGN activity, in different phases

Truong+ 2024

They can be in very different stages of merging

Nelson+2024

We try to characterise them in scalars or azimuthally averaged profiles

So what can we learn from cluster images?

2. We can sort the cluster images by similarity and identify cluster populations in image space

So what can we learn from cluster images?

2. The image-based sorting retains a lot of information about cluster mass, feedback and merger history - *even after correcting for halo mass*

Understanding correlations between feedback, mergers, and cluster cores

2. The image-based sorting retains a lot of information about cluster mass, feedback and merger history -<u>even after correcting for halo mass</u>

The median values of feedback, merger and cool-coreness metrics <u>are more correlated with each other</u> in similar regions of the representation space (bottom) than without image-based sorting (above)

