From lattice field theory to machine learning and back

Gert Aarts

EuCAIFCon Apr 2024

Swansea ML-LFT group

Chanju Park, Diaa Habibi, Shiyang Chen, GA, Biagio Lucini, Matteo Favoni

cdt-aimlac.org/

- 5 cohorts of O(11) PhD students each
- first cohort has graduated
- final cohort of 17 students started in Oct 2023
- o 60% particle physics/astronomy
- o 25% computer science/maths
- 15% health

Swansea University Prifysgol Abertawe

Lattice field theory (LFT) $\leftarrow \rightarrow$ ML

- many fascinating connections between ML and statistical physics/field theory
- what can we learn that is relevant for \rightarrow or \leftarrow direction

lattice field theory: very loosely speaking

- many fluctuating degrees of freedom on a lattice/graph <-> Markov random fields
- thermalisation and non-equilibrium dynamics <-> learning
- stochastic quantisation and Langevin dynamics <-> diffusion models
- renormalisation group

 \bigcirc

...

Conceptual and practical questions

can experience in quantum field theory help in understanding ML and vice versa?

quantum field-theoretic machine learning

Dimitrios Bachtis, GA, Biagio Lucini, Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]

• scalar field restricted Boltzmann machines as an ultraviolet regulator

Chanju Park, Biagio Lucini, GA, Phys. Rev. D 109 (2024) 034521 [2309.15002 [hep-lat]]

stochastic quantisation and diffusion models

Lingxiao Wang, GA, Kai Zhou, JHEP (to appear) [2309.17082 [hep-lat]]

NeurIPS 2023 2311.03578 [hep-lat]

Topic 1

scalar field restricted Boltzmann machines as an ultraviolet regulator

Chanju Park, Biagio Lucini, GA

Phys. Rev. D 109 (2024) 034521 [2309.15002 [hep-lat]]

Restricted Boltzmann Machine: generative network

energy-based method

probability distribution

• binary or continuous d.o.f.

$$p(\phi,h)=rac{1}{Z}e^{-S(\phi,h)}$$

$$Z = \int D\phi Dh \, e^{-S(\phi,h)}$$

7

Scalar field RBM

• treat RBM as a lattice field theory with action

$$S(\phi, h) = \sum_{i} \frac{1}{2} \mu_{i}^{2} \phi_{i}^{2} + \sum_{a} \frac{1}{2\sigma^{2}} (h_{a} - \eta_{a})^{2} - \sum_{i,a} \phi_{i} w_{ia} h_{a}$$

- \circ only quadratic terms, add interactions later, e.g ϕ^4 terms
- learn weight matrix w_{ia} and bias η_a (put to 0 below)
- induced distribution on visible layer

$$p(\phi) = \int Dh \, p(\phi, h) = \frac{1}{Z} \exp\left(-\frac{1}{2} \sum_{i,j} \phi_i K_{ij} \phi_j + \sum_i J_i \phi_i\right)$$

Gaussian scalar field RBM

• induced distribution on visible layer $p(\phi) = \int Dh \, p(\phi, h) = \frac{1}{Z} \exp\left(-\frac{1}{2} \sum_{i,j} \phi_i K_{ij} \phi_j + \sum_i J_i \phi_i\right)$

- scalar field with kinetic (all-to-all) term $K_{ij} = \mu_i^2 \delta_{ij} \sigma^2 \sum_a w_{ia} w_{aj}^T$ and source $J_i = \sum_a w_{ia} \eta_a$
- unusual Gaussian LFT: what is the weight matrix W and bias η ?
- learn from data or directly from known distribution
- simplest case: target theory = LFT of free scalar field in 1 or 2d, $K^{\phi} \approx p^2 + m^2$

$$WW^{T} = \frac{1}{\sigma^{2}} \left(\mu^{2} \mathbb{1} - K^{\phi} \right) \equiv \mathcal{K}$$

Infinite # of solutions ($N_{h} = N_{v}$)

infinite # solutions for weight matrix, use that \mathcal{K} is symmetric and positive-definite

- 1. Cholesky decomposition $\mathcal{K} = LL^T$: W = L triangular
- 2. diagonalisation $\mathcal{K} = ODO^T = O\sqrt{D}O^TO\sqrt{D}O^T$: $W = W^T = O\sqrt{D}O^T$
- **3.** non-uniqueness: internal symmetry $W \to WO_R \rightarrow \phi^T Wh \to \phi^T WO_R h = \phi^T Wh'$

in practice

- realisation depends on initialisation
- o non-observable degeneracy due to internal symmetry on hidden layer

$K_{ij} = \mu_i^2 \delta_{ij} - \sigma^2 \sum_a w_{ia} w_{aj}^T$

Dependence on N_h and μ^2

- what if $N_h < N_v$? role of hyperparameter μ^2 ?
- use LFT insights: target distribution is scalar field theory
- method: SVD of weight matrix $W = U \Xi V^T$
- $\circ \quad \text{quadratic kernel} \quad K = \mu^2 \mathbbm{1} \sigma_h^2 U \Xi \Xi^T U^T = U \left[\mu^2 \mathbbm{1} \sigma_h^2 \Xi \Xi^T \right] U^T \equiv U D_K U^T$
- eigenvalues of quadratic kernel

$$D_{K} = \operatorname{diag}\left(\underbrace{\mu^{2} - \sigma_{h}^{2}\xi_{1}^{2}, \mu^{2} - \sigma_{h}^{2}\xi_{2}^{2}, \dots, \mu^{2} - \sigma_{h}^{2}\xi_{N_{h}}^{2}}_{N_{h}}, \underbrace{\mu^{2}, \dots, \mu^{2}}_{N_{v} - N_{h}}\right)$$

• both N_h and μ^2 act as **ultraviolet regulators**

train RBM with persistent contrastive divergence

What if $N_h < N_v$?

- example: scalar LFT with $N_v = 10$ nodes
- exact spectrum:

 $\kappa \sim p^2 + m^2$

- reproduced by RBM (λ) from smallest eigenvalue upwards
- higher modes are moved to cut-off scale (μ^2)

What if RBM mass $\mu^2 < \lambda_{max}$?

- example: scalar LFT with $N_v = 10$ nodes
- exact spectrum:

 $\kappa \sim p^2 + m^2$

• reproduced by RBM (λ) from smallest eigenvalue upwards

• higher modes are suppressed at cut-off scale (μ^2)

RBM as ultraviolet regulator

- relevant for "real" data sets? MNIST: 28x28 images of digits
- compute spectrum of two-point correlator $K_{ij}^{-1} = \langle \phi_i \phi_j \rangle_{data}$
- inverse spectrum $1/\kappa$
- infrared safe

C	infrared	 6.572
0		 4.806
		 4.178
		 3.650
ğ4		 3.297
- L		 2.920 -
-1		 2.216
2		 1.953
		 1.871
		 1.596
0	ultraviolet	 1.428

ultraviolet divergent

MNIST with fixed RBM mass

- $\circ N_{v} = N_{h} = 784$
- fixed RBM mass $\mu^2 = 100$
- spectrum regulated
- infrared modes learned correctly

MNIST with $N_h \leq N_v$

what is the effect of including incomplete spectrum?

5	0	Ч	1	9	2	١	3
1	4	3)	5	3	6	1	7
9	8	6	9	T	0	9	1
1	г	4	3	2	7	N	8

5	0	Ч	1	9	2	١	3
1	4	3	ک	3	6	1	7
Υ	8	6	9	T	0	9	1
ユ	г	Ч	3	2	7	Ы	8

removal of

ultraviolet modes

affects

generative power

(a) $N_h = 784$

5	0	H	1	9	3	1	З
1	4	3	${\bf \bar{e}}$	3	6	Ŧ	7
Э	8	6	9	g	Ð	9	1
<u>t</u>	З	4	3	2	7	3	8

(d) $N_h = 36$

(b) $N_h = 225$

(c) $N_h = 64$

5	0	g	1	9	3	4	З
3	9	ŝ	6	3	6	$^{\pm}$	7
Э	8	6	9	ы	0	9	λ,
(2)	3	4	3	2	7	3	в,

(e) $N_h = 16$

(f) $N_h = 4$

Topic 2

stochastic quantisation and diffusion models

Lingxiao Wang, GA, Kai Zhou JHEP (to appear) [<u>2309.17082</u> [hep-lat]] NeurIPS 2023 <u>2311.03578</u> [hep-lat]

Diffusion models

- solve stochastic process with a particular drift/force/score
- o drift is learnt during forward diffusion process, starting from data
- o new configurations are generated via backward process using learnt drift

Stochastic quantisation

- o ideas well-known in quantum field theory: stochastic quantisation (Parisi & Wu 1980)
- path integral quantisation via a stochastic process in fictitious time

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\frac{\delta S_E[\phi]}{\delta \phi(x,\tau)} + \eta(x,\tau) \qquad \qquad \langle \eta(x,\tau)\eta(x',\tau')\rangle = 2\alpha\delta(x-x')\delta(\tau-\tau')$$

- equilibrium solution $(\tau \to \infty)$: distribution $p(\phi) \sim e^{-S_E}$
- o convergence guaranteed for real actions due to properties of Fokker-Planck equation
- create samples from Euclidean path integral
- applied to non-abelian gauge theories and QCD in 1980s, but superseded by other methods such as Hybrid Monte Carlo (HMC) [stepsize dependence, efficiency]

Stochastic quantisation and diffusion models

o diffusion models as an alternative approach to stochastic quantisation

Diffusion model for 2d ϕ^4 scalar theory

- \circ 32² lattice, choice of action parameters in symmetric and broken phase
- training data set generated using Hybrid Monte Carlo (HMC)
- variance expanding DM trained using
 U-Net architecture

generating configurations:

- o broken phase
- "denoising" (backward process)
- large-scale clusters emerge, as expected

 $\tau = 0$ $\tau = 0.25$ $\tau = 0.5$ $\tau = 0.75$ $\tau = 1$

Diffusion model for 2d ϕ^4 scalar theory

generating configurations in symmetric phase

- \circ compute magnetisation < M >, susceptibility χ_2 , Binder cumulant U_L
- compare with test HMC data set (with same statistics)

data-set	$\langle M angle$	χ_2	U_L
Training (HMC)	0.0012 ± 0.0007	2.5160 ± 0.0457	0.1042 ± 0.0367
Testing (HMC)	0.0018 ± 0.0015	2.4463 ± 0.1099	-0.0198 ± 0.1035
Generated (DM)	0.0017 ± 0.0015	2.4227 ± 0.1035	0.0484 ± 0.0959

good agreement is observed

Diffusion model for 2d ϕ^4 scalar theory

- auto-correlation time (first comparison)
- normalised auto-correlation function

overall:

- proof of principle
- expected results obtained
- need to do detailed comparison
 of precision, speed and scalability

Summary and outlook

- o can experience in quantum field theory help in understanding ML and vice versa?
- two examples of interplay between lattice field theory and ML
 - scalar field RBM as ultraviolet regulator
 - stochastic quantisation and diffusion models
- interplay between statistical/lattice field theory and ML
- many directions to explore

- $\circ N_{v} = N_{h} = 784$
- dynamical RBM mass μ^2 is learned as well
- spectrum regulated
- ultraviolet cut-off μ^2 increases to include more modes

Interacting scalar field RBM

- Gaussian RBMs can learn Gaussian distributions
- in LFT language: need to include interactions
- various ways to do so, depending on properties of target distribution
- \circ QFT-ML approach: add local potential terms on nodes, e.g. ϕ^4 terms

Quantum field-theoretic machine learning, Bachtis, Aarts, Lucini Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]

 \circ standard RBM approach: use binary hidden layer $h_a=\pm 1$

Scalar-Bernoulli RBM: hidden binary nodes

o induced distribution
$$p(\phi) = \frac{1}{Z} \exp\left(-S_{\phi}(\phi) + \sum_{a} \sum_{n=1}^{\infty} c_n \psi_a^{2n}\right)$$
 with $\psi_a = \sum_{i} \phi_i w_{ia} - \eta_a$

 $\circ~$ generates all-to-all interactions of all powers of $~\phi~$

- \circ at leading order in W same kinetic term as in Gaussian case
- example of quartic term (taking $\eta_a = 0$ for simplicity) $\sum_{a} \sum_{i,j,k,l} (\phi_i w_{ia}) (\phi_j w_{ja}) (\phi_k w_{ka}) (\phi_l w_{la})$

highly non-local, very different from standard field theories, analysis in preparation

Stochastic quantisation: complex actions

- approach not limited to real-valued distributions/actions
- extend Langevin process to complex manifold: complex Langevin dynamics (Parisi 1981)
- complexify d.o.f.: real scalar → complex scalar, $U \in SU(N) \rightarrow U \in SL(N, \mathbb{C})$
- o convergence not guaranteed, no general solution of Fokker-Planck equation
- a posteriori justification (GA, Seiler, Stamatescu 2009, Nagata, Nishimura, Shimasaki 2016)
- o applied to problems at finite (baryon) chemical potential (GA & Stamatescu 2008, Aarts 2009)
- success in some theories, QCD remains difficult (e.g. Sexty 2019)
- o introductory lectures: GA, J.Phys.Conf.Ser. 706 (2016) 2, 022004 [1512.05145 [hep-lat]]