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Swansea ML-LFT group 



o 5 cohorts of O(11) PhD students each
o first cohort has graduated
o final cohort of 17 students started 
     in Oct 2023

o 60% particle physics/astronomy
o 25% computer science/maths
o 15% health 

cdt-aimlac.org/ 

https://cdt-aimlac.org/


Lattice field theory (LFT) ßà ML

§   many fascinating connections between ML and statistical physics/field theory
§   what can we learn that is relevant for  à  or  ß direction

lattice field theory: very loosely speaking
o   many fluctuating degrees of freedom on a lattice/graph <-> Markov random fields
o   thermalisation and non-equilibrium dynamics <-> learning
o   stochastic quantisation and Langevin dynamics <-> diffusion models
o   renormalisation group
o   …
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Conceptual and practical questions

can experience in quantum field theory help in understanding ML and vice versa?

o  quantum field-theoretic machine learning
 Dimitrios Bachtis, GA, Biagio Lucini, Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]

o  scalar field restricted Boltzmann machines as an ultraviolet regulator
  Chanju Park, Biagio Lucini, GA, Phys. Rev. D 109 (2024) 034521 [2309.15002 [hep-lat]]

 

o  stochastic quantisation and diffusion models     
  Lingxiao Wang, GA, Kai Zhou, JHEP (to appear) [2309.17082 [hep-lat]]

NeurIPS 2023 2311.03578 [hep-lat]5

https://arxiv.org/abs/2102.09449
https://arxiv.org/abs/2309.15002
https://arxiv.org/abs/2309.17082
https://arxiv.org/abs/2311.03578


Topic 1

scalar field restricted Boltzmann machines as an ultraviolet regulator
     Chanju Park, Biagio Lucini, GA

     Phys. Rev. D 109 (2024) 034521 [2309.15002 [hep-lat]] 
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https://arxiv.org/abs/2309.15002


Restricted Boltzmann Machine: generative network

o   energy-based method

o   probability distribution

o   binary or continuous d.o.f.
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Scalar field RBM

o   treat RBM as a lattice field theory with action

o   only quadratic terms, add interactions later, e.g.      terms
o   learn weight matrix 𝑤!" and bias 𝜂" (put to 0 below)
o   induced distribution on visible layer

N

i= i= i=21

a= a= a=1 2 h

Nv
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o   induced distribution on visible layer

o   scalar field with kinetic (all-to-all) term  
     and source

o   unusual Gaussian LFT: what is the weight matrix 𝑊 and bias 𝜂?

o  learn from data or directly from known distribution

o   simplest case: target theory = LFT of free scalar field in 1 or 2d, 𝐾# ≈ 𝑝$ +𝑚$

Gaussian scalar field RBM



infinite # solutions for weight matrix, use that       is symmetric and positive-definite

1. Cholesky decomposition      :  triangular
      
2. diagonalisation       : 

3. non-uniqueness: internal symmetry 

in practice
o   realisation depends on initialisation
o   non-observable degeneracy due to internal symmetry on hidden layer

Infinite # of solutions (𝑁! = 𝑁")

10



o   what if 𝑁% < 𝑁&? role of hyperparameter 𝜇$? 

o   use LFT insights: target distribution is scalar field theory
o   method: SVD of weight matrix

o   quadratic kernel

o   eigenvalues of quadratic kernel

o   both 𝑁% and 𝜇$ act as ultraviolet regulators 

Dependence on 𝑁! and 𝜇#
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• example: scalar LFT
    with 𝑁! = 10 nodes

• exact spectrum:
  𝜅	~	𝑝" +𝑚" 

• reproduced by RBM (𝜆) from 
smallest eigenvalue upwards

• higher modes are moved to 
cut-off scale (𝜇") 

What if 𝑁! < 𝑁" ? 

train RBM with persistent contrastive divergence
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• example: scalar LFT
    with 𝑁! = 10 nodes

• exact spectrum:
  𝜅	~	𝑝" +𝑚"

• reproduced by RBM (𝜆) from 
smallest eigenvalue upwards

• higher modes are suppressed 
at cut-off scale (𝜇") 

What if RBM mass 𝜇# <	𝜆$%& ?
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o   relevant for “real” data sets? MNIST: 28x28 images of digits

o   compute spectrum of two-point 

     correlator  𝐾!'() =	< 𝜙!𝜙' >*"+"

o   inverse spectrum 1/𝜅

o   infrared safe

o   ultraviolet divergent

RBM as ultraviolet regulator
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o   𝑁& = 𝑁% = 784

o   fixed RBM mass 𝜇$ = 100

o   spectrum regulated

o   infrared modes learned
     correctly

MNIST with fixed RBM mass
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what is the effect of
including incomplete 
spectrum?

removal of 
ultraviolet modes 
affects 
generative power

MNIST with 𝑁! ≤ 𝑁"
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Topic 2

stochastic quantisation and diffusion models Lingxiao Wang, GA, Kai Zhou 

       JHEP (to appear) [2309.17082 [hep-lat]]

       NeurIPS 2023 2311.03578 [hep-lat]
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https://arxiv.org/abs/2309.17082
https://arxiv.org/abs/2311.03578


Diffusion models

o   solve stochastic process with a particular drift/force/score
o   drift is learnt during forward diffusion process, starting from data
o   new configurations are generated via backward process using learnt drift  

!! !" !!

"! "" "!
!"
!# = f ", # + ( # ) !"

!* = [f ", * − ( * !∇"log 1#(")] + ( * )̅
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Stochastic quantisation

o   ideas well-known in quantum field theory: stochastic quantisation (Parisi & Wu 1980)

o   path integral quantisation via a stochastic process in fictitious time

 
o   equilibrium solution (𝜏 → ∞): distribution  𝑝 𝜙 	~	𝑒(,!

o   convergence guaranteed for real actions due to properties of Fokker-Planck equation
o   create samples from Euclidean path integral
o   applied to non-abelian gauge theories and QCD in 1980s, but superseded by other
      methods such as Hybrid Monte Carlo (HMC) [stepsize dependence, efficiency]
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Stochastic quantisation and diffusion models

o   diffusion models as an alternative approach to stochastic quantisation

configurations

theory: 𝑝 𝜙 	~	𝑒(,!  

e.g. HMC

configurations
stochastic quantisation

diffusion model, forward process

diffusion model, 
backward process
“denoising”

random 
configurations
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Diffusion model for 2d 𝜙' scalar theory

o   32$ lattice, choice of action parameters in symmetric and broken phase
o   training data set generated using Hybrid Monte Carlo (HMC)
o   variance expanding DM trained using 
     U-Net architecture

generating configurations:
o   broken phase
o   “denoising” (backward process) 
o   large-scale clusters emerge, as expected

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1
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Diffusion model for 2d 𝜙' scalar theory

generating configurations in symmetric phase

o   compute magnetisation < 𝑀 >	, susceptibility 𝜒$	, Binder cumulant 𝑈-
o   compare with test HMC data set (with same statistics)

o   good agreement is observed
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Diffusion model for 2d 𝜙' scalar theory

o  auto-correlation time (first comparison)
o  normalised auto-correlation function

overall:
o  proof of principle
o  expected results obtained
o  need to do detailed comparison 
     of precision, speed and scalability
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Summary and outlook

o  can experience in quantum field theory help in understanding ML and vice versa?

o  two examples of interplay between lattice field theory and ML
o   scalar field RBM as ultraviolet regulator
o   stochastic quantisation and diffusion models

o   interplay between statistical/lattice field theory and ML
o   many directions to explore
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Back-up
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o   𝑁& = 𝑁% = 784

o   dynamical RBM mass 𝜇$ 
      is learned as well

o   spectrum regulated

o   ultraviolet cut-off 𝜇$ increases 
     to include more modes

MNIST with dynamic RBM mass
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o   Gaussian RBMs can learn Gaussian distributions
o   in LFT language: need to include interactions
o   various ways to do so, depending on properties of target distribution

o   QFT-ML approach: add local potential terms on nodes, e.g.      terms 

o   standard RBM approach: use binary hidden layer

Interacting scalar field RBM

Quantum field-theoretic machine learning, Bachtis, Aarts, Lucini 
Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]
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o   induced distribution      with

o   generates all-to-all interactions of all powers of  

o   at leading order in    s: same kinetic term as in Gaussian case 

o   example of quartic term 
     (taking      for simplicity)

o   highly non-local, very different from standard field theories, analysis in preparation

Scalar-Bernoulli RBM: hidden binary nodes
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Stochastic quantisation: complex actions

o   approach not limited to real-valued distributions/actions
o   extend Langevin process to complex manifold: complex Langevin dynamics (Parisi 1981)

o   complexify d.o.f.: real scalar →  complex scalar, 𝑈 ∈ 𝑆𝑈 𝑁 → 𝑈 ∈ 𝑆𝐿(𝑁, ℂ)

o   convergence not guaranteed, no general solution of Fokker-Planck equation
o   a posteriori justification (GA, Seiler, Stamatescu 2009, Nagata, Nishimura, Shimasaki 2016)

o   applied to problems at finite (baryon) chemical potential (GA & Stamatescu 2008, Aarts 2009)

o   success in some theories, QCD remains difficult (e.g. Sexty 2019)

o   introductory lectures: GA, J.Phys.Conf.Ser. 706 (2016) 2, 022004 [1512.05145 [hep-lat]]
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https://arxiv.org/abs/1512.05145

