Precision-Machine Learning for the Matrix Element Method

Theo Heimel, Nathan Huetsch, Ramon Winterhalder, Tilman Plehn, Anja Butter

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Classical analysis

- hand-crafted observables
- binned data
- \rightarrow loss of information

How can we extract all the available information from LHC data?

Matrix Element Method (MEM)

- based on first principles
- estimates uncertainties reliably
- optimal use of information
- \rightarrow perfect for processes with few events

Learning the transfer function

LHC example

Single top and Higgs production with anomalous CP-phase α Hadronic decay of top + ISR: tHq \rightarrow (bjj) ($\gamma\gamma$) j + QCD jets

- low total cross section (few events)
- low variation of rate
- kinematic observables still sensitive
- \rightarrow ideal use case for MEM

• transformer

correlations between momenta, combinatorics

normalizing flow likelihood for individual momenta

Bayesian networks estimate training uncertainties

- smooth and well-calibrated likelihoods, both for low and high event counts
- close to optimal information
- Uncertainty bands: MC integration error & systematic error from limited training statistics (BNN)