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How can we extract all the 
available information from LHC data?
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Binned, low-dimensional data 

→ loss of information

Use theory knowledge to 
extract likelihood 

→ matrix element method
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known from 
theory

likelihood intractable 
→ use machine learning

ℒ
Theory Shower EventsHard process Hadronization Detectors

• smooth and well-calibrated likelihoods, 
both for low and high event counts 

• close to optimal information 
• Uncertainty bands: MC integration error & 

systematic error from limited training statistics (BNN) 
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• transformer 
correlations between momenta, combinatorics 

• normalizing flow 
likelihood for individual momenta  

• Bayesian networks 
estimate training uncertainties 
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Classical analysis 

• hand-crafted observables 
• binned data 

→ loss of information

Matrix Element Method (MEM) 

• based on first principles 
• estimates uncertainties reliably 
• optimal use of information 

→ perfect for processes with few events

Theory 
parameter 

α

Reconstructed 
momenta 

xreco

known from 
theory

likelihood intractable 
→ learn with neural network

p(xreco |α) = ∫ dxhard p(xhard |α) p(xreco |xhard) ϵ(xhard)

Efficient MC integration 
importance sampling 
with normalizing flow 

xhard ∼ p(xhard ∣ xreco, α)

Theory knowledge 
diff. cross-section 

1
σ(α)

dσ(α)
dxhard

Transfer function 
density estimation: 

normalizing flow and 
transformer

Acceptance function 
learn with simple 
classifier network

ℒ
Theory Shower EventsHard process DetectorsHadronization

How can we extract 
all the available information 

from LHC data?

Single top and Higgs production with anomalous CP-phase  
Hadronic decay of top + ISR:   

• low total cross section (few events)  
• low variation of rate 
• kinematic observables still sensitive 

→ ideal use case for MEM 
 

α
tHq → (bjj) (γγ) j + QCD jets

LHC example

Results

Learning the transfer function

SciPost Physics Submission

the inputs by one and mask the self-attention matrix using a triangular mask to ensure that
every momentum is only conditioned on the previous momenta. e(i)reco and e(i)hard denote the
particle-wise embeddings of the momenta and their position. We define this embedding as the
concatenation of the momenta and their one-hot-encoded position in the event, padded with
zeros. Using a single linear layer instead of the zero-padding does not lead to any performance
improvements. We then sample from the transfer probability iteratively, which requires n
Transfermer evaluations,

p(x (i)reco|xhard)⌘ p(x (i)reco|c(e(0)reco, . . . , e(i�1)
reco , ehard)) . (46)

Since all c(i) can be computed in a single step from the reco-level momenta, density estimation
and training this model is very fast. This is also the way the Transfermer is used during the
MEM integration.

The transfer probability in Eq.(45) still has to be converted into a probability distribution
for the 4-momentum components of the external particles. To encode massless and massive
particles in the same cINN we factorize it into

p(x (i)reco|c(i)) = p(p(i)T ,⌘(i),�(i)|c(i))⇥ p(m(i)|p(i)T ,⌘(i),�(i), c(i)) , (47)

such that the generation of the mass direction can be omitted without affecting the other three
components. The corresponding cINN architecture is given in the right panel of Fig. 6. Ratio-
nal quadratic spline coupling layers model the one-dimensional distributions. By transforming
each momentum component once and conditioning it on the other components and the trans-
former output, using a feed-forward network, we build a minimal cINN that is able to model
the correlations between the momentum components.

In practice, we use normalized versions of log pT and log m as inputs for the network and
map them to Gaussian latent spaces. Similarly, we map � and ⌘ to uniform latent spaces,
taking into account the detector-level ⌘ cuts. For � we use periodic RQS splines [88]. The
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Figure 6: Left: transformer combined with cINN, encoding the transfer probability. Right:
cINN used to learn individual momenta, where r is the usual latent space to parametrize a
generative model.
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Come to my poster to see how this can be done with 
transformers, normalizing flows, classifiers and 
neural importance sampling!


