

A deep learning method for the trajectory reconstruction of gamma rays with the DAMPE space mission

Parzival Nussbaum, Chiara Perrina, Jennifer Frieden 01.05.2024 EuCAIFCon

Standard approach to trajectory reconstruction

- **1** Shower profile \implies BGO reco track
- Olustering the STK hits
- Track-finding algorithm on clusters in the STK:
 - Seeding (calorimeter-seed or blind-seed).
 - Propagating using a Kalman Filter.
 - Filtering based on χ^2 and cluster count.
- 4 Multiple track candidates
 - \implies metric (TQ) to choose the best track

Next generation experiments

Standard reco is more challenging at higher energies since systematic uncertainties increase

CNN approach to trajectory reconstruction

- **1** Shower profile \implies BGO reco track
- Olustering the STK hits
- **3** Hough transform of STK hits
- ONN model prediction
 - Seeding (calorimeter-seed or blind-seed).
 - Propagating using a Kalman Filter.
 - Filtering based on χ^2 and cluster count.
- 6 Multiple track candidates

 \implies metric (TQ) to choose the best track

Results

- 300 times faster than standard reco
- One third of standard method precision
- · Successful proof of concept on flight data

