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Introduction to ATLAS Physics

The ATLAS detector is a general-purpose barrel detector located at the LHC It
studies high-energy fundamental particles such as the Top quark, and the Higgs
boson. While these particles cannot be directly detected (T < 107%° 5), their decay

b-tagging in ATLAS

Due to the strong interaction, color-charged partons
radiate and hadronize into the collimated spray we call a
“jet”. Heavy-flavour partons such as the b-quark and c-
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“light-flavour jets” by their characteristic longer
lifetimes, and decay-chains which can produce secondary
(and tertiary) vertices in the jet. Identifying heavy-flavour

jets with high background
rejection power is key to
many measurements — and a
proper calibration of the
. technique is of paramount
---- importance for results.

Top Quark 173.5GeV 1< 10 %*s t>W+b 99.9%
Higgs Boson 125.09GeV 1<107%2s h—->bb / h—>cC 58% / 20%

Physics objects are reconstructed by combining information from detector subsystems (tracking, calorimeters, and muon
chambers). One important physics object that combines information from all subsystems is the jet — which represent a
collimated spray of charged and un-charged hadrons produced in the pp-collision. Jets in ATLAS are reconstructed with a
sequential anti-kt algorithm [3], where R=0.4 for “small-R jets” [4], and R=1.0 for “large-R jets” [5]. Internal to the jet, there
are reconstructed tracks of charged particles — and at points where one or more tracks originate, one reconstructs vertices.
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Flavour-tagging algorithms - || Boosted Object Tagging

Flavour-tagging has historically used a combination of “low-
level” algorithms, which individually optimized to target a
specific  low-level  observable (e.g.  secondary-vertex
reconstruction) and provide discrimination power from these
physically interpretable observables alone. The outputs of these
low-level taggers were then used as input into a ‘“high-level”
DNN known as DLir [8]. This approach is labor intensive to
train and to re-train for usage in the continually changing

Heavy particles are produced at the
LHC with a continuum of momenta
— should these particles decay into
hadrons (e.g. b-quarks), these decay
particles may be reconstructed as a

|

|

I

|

|
Associated |
tracks |
I

|

|

|

|

Manually

optimised algorithms jet. At higher momenta, the jets will

Trained <
algorithms

begin to overlap (collimation) and

. Resolved
the decay signature can no longer ;.

H(bb)

conditions at the LHC. A more unified approach is being ( ) be distinguished as two separate
pioneered, which uses only low-level input (jets, tracks) and objects.
auxiliary tasks (vertex reconstruction, track-origin) to create | 1 The decay products of Higgs bosons with a p; = 250 GeV will be collimated, and it is in

kphysically interpretable observables. this high-p; “boosted” regime that sensitivity to BSM effects is highest. To reconstruct
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N boosted H(bb) and H(cc), a large-R jet clustering is used. Like b-jet tagging, the main
background is QCD multi-jet production. However, boosted Top quarks are a further

GNI — d graph—attenthn b—tagger background that could “fake” a boosted Higgs.
Graph data-structures are well-suited to represent HEP data [9], which is generally GNZX — 4 Transformer H ( b b / C C_) tagger

unordered, feature-rich vectors that observe physical invariances. In flavour-tagging
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Track origin classification and vertex reconstruction are
auxiliary training tasks that are folded into the overall task
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difficulty of each aux111ary task.
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