
physics

Flavour Tagging with Graph Neural 
Networks with the ATLAS experiment 

Introduction to ATLAS Physics

Waltteri Leinonen on behalf of the ATLAS Collaboration

The ATLAS detector is a general-purpose barrel detector located at the LHC It 
studies high-energy fundamental particles such as the Top quark, and the Higgs 
boson. While these particles cannot be directly detected (𝜏 < 10!"#	𝑠), their decay 
products and fractions are predicted by the Standard Model [6].

b-tagging in ATLAS

Source [6] Mass Lifetimes Decay-mode Branching Fraction

Top Quark 173.5 GeV 𝜏 < 10!"$	𝑠 𝑡 → 𝑊 + 𝑏 99.9%

Higgs Boson 125.09 GeV 𝜏 < 10!""	𝑠 ℎ → 𝑏-𝑏	 /	 ℎ → 𝑐 ̅𝑐 58% / 20%

Physics objects are reconstructed by combining information from detector subsystems (tracking, calorimeters, and muon 
chambers). One important physics object that combines information from all subsystems is the jet – which represent a 
collimated spray of charged and un-charged hadrons produced in the pp-collision. Jets in ATLAS are reconstructed with a 
sequential anti-kt algorithm [3], where R=0.4 for “small-R jets” [4], and R=1.0 for “large-R jets” [5]. Internal to the jet, there 
are reconstructed tracks of charged particles – and at points where one or more tracks originate, one reconstructs vertices.

Due to the strong interaction, color-charged partons 
radiate and hadronize into the collimated spray we call a 
“jet”. Heavy-flavour partons such as the b-quark and c-
quark produce jets that can be distinguished from QCD 
“light-flavour jets” by their characteristic longer 
lifetimes, and decay-chains which can produce secondary 
(and tertiary) vertices in the jet. Identifying heavy-flavour

Flavour-tagging algorithms

jets with high background 
rejection power is key to 
many measurements – and a 
proper calibration of the 
technique is of paramount 
importance for results.

Flavour-tagging has historically used a combination of ”low-
level” algorithms, which individually optimized to target a 
specific low-level observable (e.g. secondary-vertex 
reconstruction) and provide discrimination power from these 
physically interpretable observables alone. The outputs of these 
low-level taggers were then used as input into a “high-level” 
DNN known as DL1r [8].   This approach is labor intensive to 
train and to re-train for usage in the continually changing 
conditions at the LHC. A  more unified approach is being 
pioneered, which uses only low-level input (jets, tracks) and 
auxiliary tasks (vertex reconstruction, track-origin) to create 
physically interpretable observables.

GN1 – a graph-attention b-tagger
Graph data-structures are well-suited to represent HEP data [9], which is generally 
unordered, feature-rich vectors that observe physical invariances. In flavour-tagging 
applications, each jet and track are presented by graph-level and node-level feature 
vectors, respectively. Graph neural networks (GNN) provide a framework for parsing 
such graph data-structures.

Boosted Object Tagging

The 𝑮𝑵𝟏  b-tagger is a GNN 
developed by ATLAS [1], which 
features the use of self-attention 
in its aggregation function.
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are the attention weights given to each edge connecting to the 𝑖*+ node, 𝑾 and 𝒂 are 
fully-connected layers,  and 𝜎 and 𝜃 are non-linear activation functions.

• 1 track initializer network
• 3 GNN blocks (as above)
• 1 Pinal attention layer (weighted sum)
• 3 independent fully-connected NNs

> Global classiPication (jet-origin tagging)
> Edge classiPication (vertex reconstruction)
> Node classiPication (track-origin tagging)

Auxiliary Training Tasks
Track origin classification and vertex reconstruction are 
auxiliary training tasks that are folded into the overall task 
of tagging b-jets (and c-jets) by additional terms in the loss 
function. The total loss function is given as a weighted sum: 
𝑳𝒕𝒐𝒕𝒂𝒍 = 𝑳𝒋𝒆𝒕 + 	𝜶𝑳𝒗𝒆𝒓𝒕𝒆𝒙 + 𝜷𝑳𝒕𝒓𝒂𝒄𝒌  where 𝛼 = 1.5  and 
𝛽 = 0.5 provide a weight on each task, signaling the relative 
difficulty of each auxiliary task.

𝑳𝒋𝒆𝒕: Categorical cross-entropy 
over all jet-flavours (b, c, light, 𝜏)

𝑳𝒗𝒆𝒓𝒕𝒆𝒙: Binary cross-entropy 
loss on track-pair compatibility, 
averaged over all track-pairs in 
one batch.

𝑳𝒕𝒓𝒂𝒄𝒌: Categorical cross-entropy 
over track-origin prediction, 
averaged over all tracks in one 
batch.

GN2X – a Transformer 𝐻(𝑏$𝑏/𝑐 ̅𝑐) tagger
The GN2 architecture is similar to GN1 but 
replaces the GNN layer with a Transformer 
encoder which has four attention heads. Each 
encoder calculates the attention scores with a 
scaled dot-product attention
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closely resembling the original transformer 
architecture [7]. This network has already 
superseded the GN1 architecture and has been 
applied not only to b-tagging, but to boosted 
Higgs tagging in the GN2X.

Prior to GN2X, the state-of-the-art boosted 
“Xbb” tagger was a DNN large-R jet tagger that 
relied on the sub-jet DL1r b-tagging 
information [10,11] within the large-R jet.

Heavy particles are produced at the 
LHC with a continuum of momenta 
– should these particles decay into 
hadrons (e.g. b-quarks), these decay 
particles may be reconstructed as a 
jet. At higher momenta, the jets will 
begin to overlap (collimation) and 
the decay signature can no longer 
be distinguished as two separate 
objects.
The decay products of Higgs bosons with a 𝑝9 ≳ 250	𝐺𝑒𝑉 will be collimated, and it is in 
this high-𝑝9 “boosted” regime that sensitivity to BSM effects is highest. To reconstruct 
boosted 𝐻(𝑏-𝑏) and 𝐻(𝑐 ̅𝑐), a large-R jet clustering is used. Like b-jet tagging, the main 
background is QCD multi-jet production. However, boosted Top quarks are a further 
background that could “fake” a boosted Higgs.
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Mass sculpting
One of the major challenges that GN2X (and the 
previous Xbb tagger) faces when taking 
analysis-level usage into consideration is the 
distribution-level mass sculpting effect on 
backgrounds such as QCD jets. If the mass of 
the large-R jet is used as an input, then one 
generally sees an improved tagging efficiency 
within the mass-range of your signal.

GN2X is trained on mass decorrelated Higgs 
sample, in which the Higgs boson decay width 
is artificially enlarged (nominally, the Higgs 
width Γ:%;;7~4	𝑀𝑒𝑉) to minimize correlations 
between jet mass and other features from 
being exploited by the network, and a 
kinematic resampling alters relative MC 
statistics in regions of phase-space to ensure 
similar kinematic distributions between all 
classes of jet (𝐻(𝑏-𝑏), 𝐻 𝑐 ̅𝑐 , Top, QCD).


