Motivations and context

- In the next years, LHC detectors will face significantly increased luminosities
- We have developed deep neural network (DNN) algorithms to identify primary and secondary vertices in pp collisions in this high pile-up environment

Previous models (hybrid FC+CNN) architecture and performances

- Here we report new results from a novel approach based on a Graph Neural Network (GNN) model

Original hybrid ML approach to finding primary vertices

- **poca-ellipsoids**: the positions and error ellipsoids at tracks positions of closest approach to the beamline.
- **target histograms**: proxies that are Gaussian distributions whose heights and widths reflect the expected PV resolutions
- Hybrid model is trained to predict distributions similar to the target histograms
- Heuristic algorithms extract PV positions from the predicted histograms

Hybrid model architecture

- **Inputs**
 - Fully Connected layers
 - UNet layers
- **Outputs**
 - 8x160 bin hist
 - 6 Fully Connected layers building 9 (x100) output channels (x480dim)
 - U-Net layers summing the 8 contributions per bin to construct final predicted histogram

Graph building for GNN implementation

- Data preparation is a crucial step when building input graphs

Summary:

- **GNN** models appear quite versatile where similar models achieve good performances for different tasks (tracking vs PV finding)
- GNN and hybrid models achieve similar intrinsic physics performance
- ...but only partial overlap meaning both models did not learn exactly the same relations from identical input data!