AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions

Utilizing machine learning for the Data Analysis of AGATA's PSA database.

M. Abushawish, J. Dudouet, O. Stezowski, G. Baulieu

Institut de Physique des deux infinis de Lyon (IP2I)

EuCAIFCon24

AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions
●OO	OO	OO	0000000	O
AGATA				

AGATA array

- Consists of 50 HPGe detectors (180 are planned to complete 4π sphere).
 - State of the art energy resolution 2keV at 1.33MeV.

• Capable of tracking gamma rays.

AGATA crystals

- Higher efficiency due to the electric segmentation.
 - No physical segmentation of the crystal (reduced dead layers between the segments).
- 36 signals for each of the segments and 1 signal for the full volume of the crystal (core signal).

AGATA	PSA	Scanning tables		Summary and Conclusions
000	00	00	0000000	0

In-beam Gamma-ray spectroscopy

Uncorrected spectrum

- In in-beam experiments product nuclei can move at speeds close to the speed of light where the Doppler effect becomes significant.
- The peaks coming from the moving nuclei are broadened due to Doppler effect.
- The sharp peaks seen in the spectrum come from the background of the experimental room.

AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions
OO●	OO	00	0000000	O

In-beam Gamma-ray spectroscopy

Doppler-corrected spectrum

- Doppler correction requires the position of the first interaction of the gamma rays.
- The FWHM after the Doppler correction at 1223 keV is 5 keV.

AGATA 000	PSA ●O	Scanning tables	Neural networks	Summary and Conclusions O
Pulse Sł	nane Analysis	(PSA)		

- Simulated databases of signals are built for each crystal.
 - Each database has a 2 mm Cartesian grid of points.
 - 700-2000 points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
 - A wide grid is first evaluated.
 - Then a full grid search is done to the voxel with the closest signal.

AGATA 000	PSA ●O	Scanning tables	Neural networks	Summary and Conclusions O
Pulse Shape	e Analysis (P	SA)		

- Simulated databases of signals are built for each crystal.
 - Each database has a 2 mm Cartesian grid of points.
 - 700-2000 points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
 - A wide grid is first evaluated.
 - Then a full grid search is done to the voxel with the closest signal.

Korichi, A., Lauritsen, Eur. Phys. J. A 55, 121 (2019)

AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions
000	OO	●O		O

Experimental database: Strasbourg scanning table

- The PSA can be improved by:
 - Improving the simulations.
 - replacing the simulated database with experimental one.
- Experimental databases were produced at LPHC Strasbourg.
 - To produce the databases the crystal had to be scanned.
 - Scanning the crystal means that we measure signals at every voxel of the crystal.
 - Laser positioning system was used to accurately position the crystal and the collimator.
 - A prototype crystal was scanned.

Picture from Michaël Ginsz, PhD thesis, Université de Strasbourg (2015)

Scanning process and Pulse Shape Comparison Scan (PSCS)

- 1 vertical (X,Y) and 1 horizontal(X,Z) scan.
- To get a 3D databases, a χ² analysis of both datasets is done.
- This method has been validated^[1,2] but it is time consuming (5 days for the PSCS analysis.)

 B. De Canditiis and G. Duchêne, Eur. Phys. J. A 56 (2020)
B. De Canditiis et al., Eur. Phys. J. A 57 (2021)

Picture from Michaël Ginsz, PhD thesis, Université de Strasbourg (2015)

AGATA 000	PSA OO	Scanning tables	Neural networks	Summary and Conclusions O
Neural netw	orks			

- 2 Long short-term memory (LSTM) layers were used.
 - LSTMs can process sequences of data like the signals and are very robust against time misalignment [X. Fabian et al. NIM-A 986 (2021): 164750.].
- The loss function was calculated only for the two known axes, this allows the network to learn patterns of each dataset without affecting the other.

Trained Neural network

AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions
000	OO	00	0000000	O
Neural netwo	rks			

- A Gaussian noise layer was added to the input to reduce the overfitting.
- The number of epochs was optimised to avoid overfitting to be 150 epochs.

AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions
000	OO		00●0000	O
Prediction	s distributi	on		

• The distribution of the predicted positions conforms with the attenuation of the gamma rays.

AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions
000	OO	00		O
Model consis	stency			

- The signals predicted at the same position should have the same shape.
- Below is a comparison between signals predicted at the same position using the PSCS method and the neural network.
- Both sets of signals show the same general shape, but the neural network shows more consistent signals.

AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions
000	OO	00	0000●00	O
Model consis	tency			

- The mean standard deviation of the signals predicted at the same position is used to evaluate the model consistency.
- It was calculated for the entire volume of the crystal.
- The neural network shows better homogeneity than the PSCS.

AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions
000	OO		00000●0	O
PSA data	abase using t	he neural network		

- The PSA databases were built by taking the mean signal per voxel in the crystal.
- Then the PSA was used to predict the position of the signals using the databases of the neural network (NN) and the PSCS.
- The predicted positions are compared with the scanned positions.

000	00	00 °	000000	0
DCA data	hace using t	he neural network		

- The PSA databases were built by taking the mean signal per voxel in the crystal.
- Then the PSA was used to predict the position of the signals using the databases of the neural network (NN) and the PSCS.
- The predicted positions are compared with the scanned positions.

AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions
000	OO		000000●	O
DCA I I I				

PSA database using the neural network

- The PSA databases were built by taking the mean signal per voxel in the crystal.
- Then the PSA was used to predict the position of the signals using the databases of the neural network (NN) and the PSCS.
- The predicted positions are compared with the scanned positions.

C		•••••	000000	
AGATA	PSA	Scanning tables	Neural networks	Summary and Conclusions

- Neural network was trained to process the Strasbourg scanning tables.
- Experimental bases were produced using the neural network and the PSCS, and then they were used for the PSA.
- The neural network 12 hours for training and 2 hour to process the two scans compared to 5 days for the PSCS.
- The neural network showed better consistency than the PSCS method.
- The neural network has 25% less error than the PSCS.

Backup: Error from the neural network

Error per pixel for vertical scan

Backup: Train segment by segment

Step size is 10 signals

Mojahed Abushawish

19 / 20

Utilizing machine learning for the Data Analysis of AGATA's PSA database