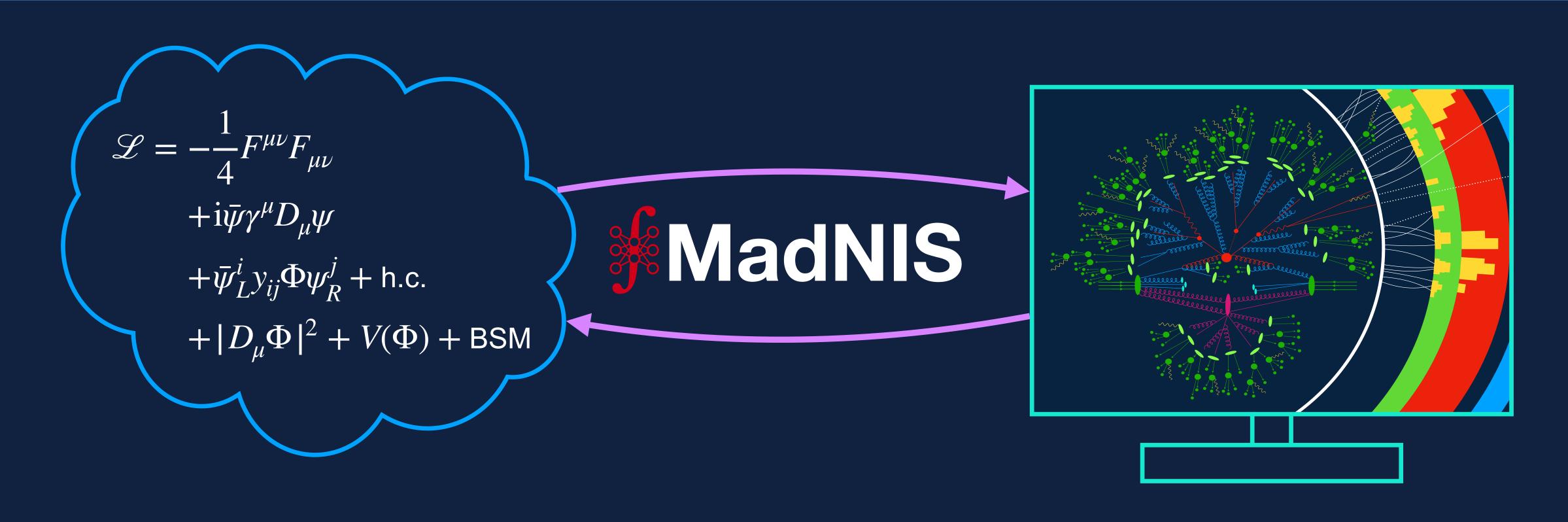
The MadNIS Reloaded

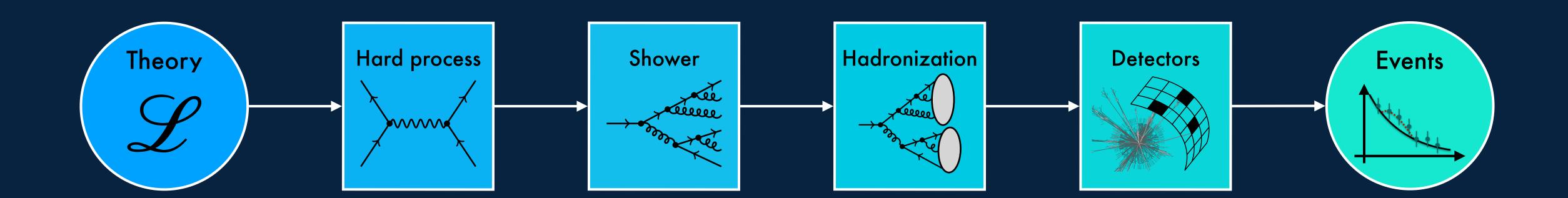
Boosting MadGraph with Neural Importance Sampling



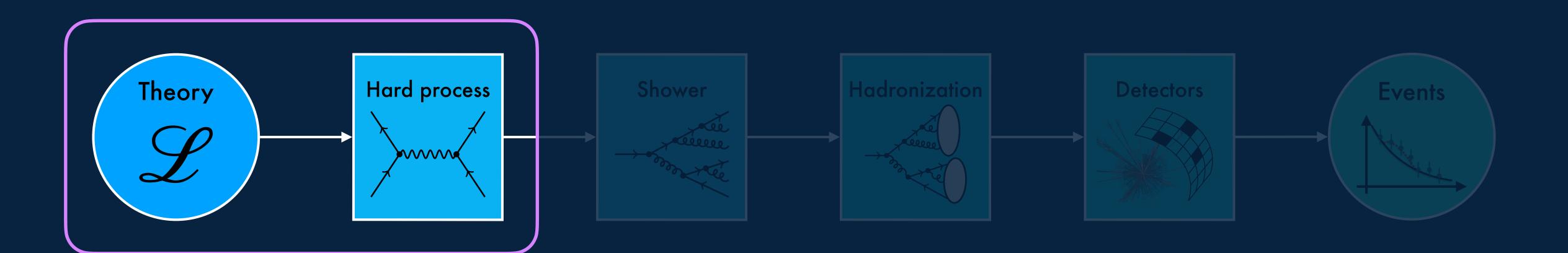
EuCAIFCon 2024 — Amsterdam

Ramon Winterhalder — UCLouvain

The LHC simulation chain



The LHC simulation chain



Differential cross section known from QFT:

 $d\sigma \sim pdf(x) \cdot |M(x)|^2 \cdot d\Phi$

Total cross section:

$$\sigma = \int_{\Phi} d\sigma$$

Monte Carlo integration + sampling from differential cross section

Accelerate with

Deep Generative Models

Exact sampling ensured by known likelihood

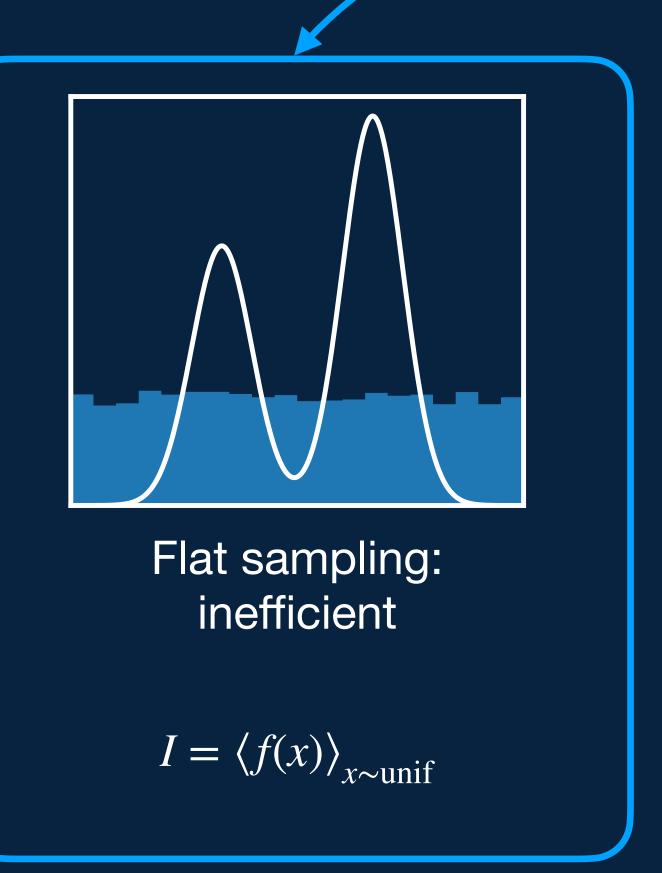
1

better model

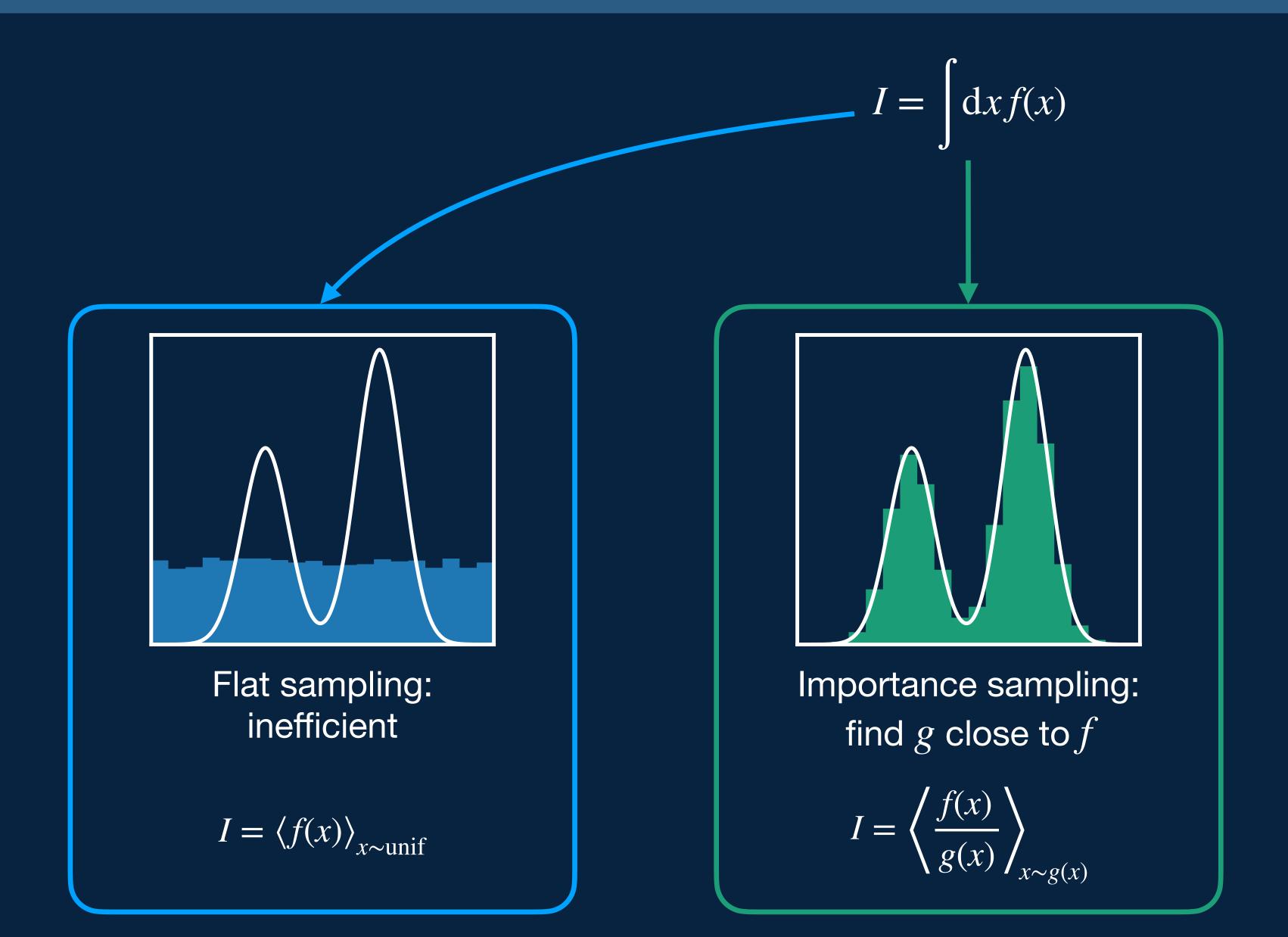
faster sampling

Monte Carlo Integration

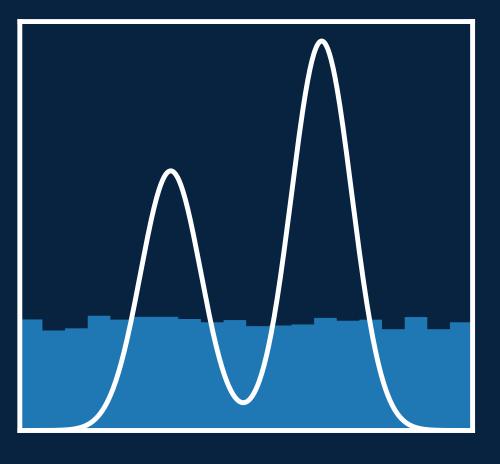
$$I = \int \mathrm{d}x f(x)$$



Monte Carlo Integration

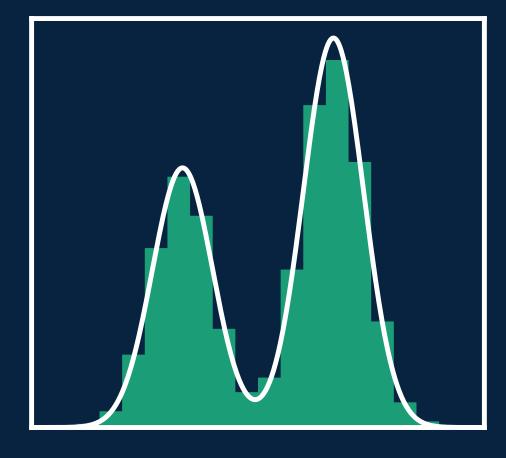


Monte Carlo Integration



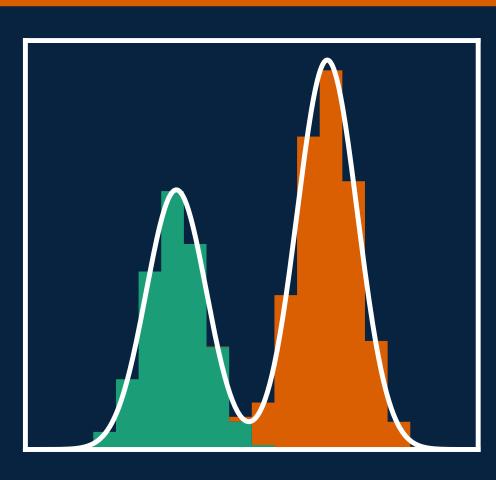
Flat sampling: inefficient

$$I = \langle f(x) \rangle_{x \sim \text{unif}}$$



Importance sampling: find g close to f

$$I = \left\langle \frac{f(x)}{g(x)} \right\rangle_{x \sim g(x)}$$



Multi-channel: one map for each channel

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Event generation

Calculate (differential) cross sections

$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,...}(p_a, p_b | p_1, ..., p_n)|^2 \rangle$$

Sum over channels

MadGraph: build channels from Feynman diagrams

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}}$$

Channel weights

MadGraph:
$$\alpha_i \sim |M_i|^2$$
 or
$$\alpha_i \sim \prod_k |p_k^2 - m_k^2 - \mathrm{i} m_k \Gamma_k|^{-2}$$

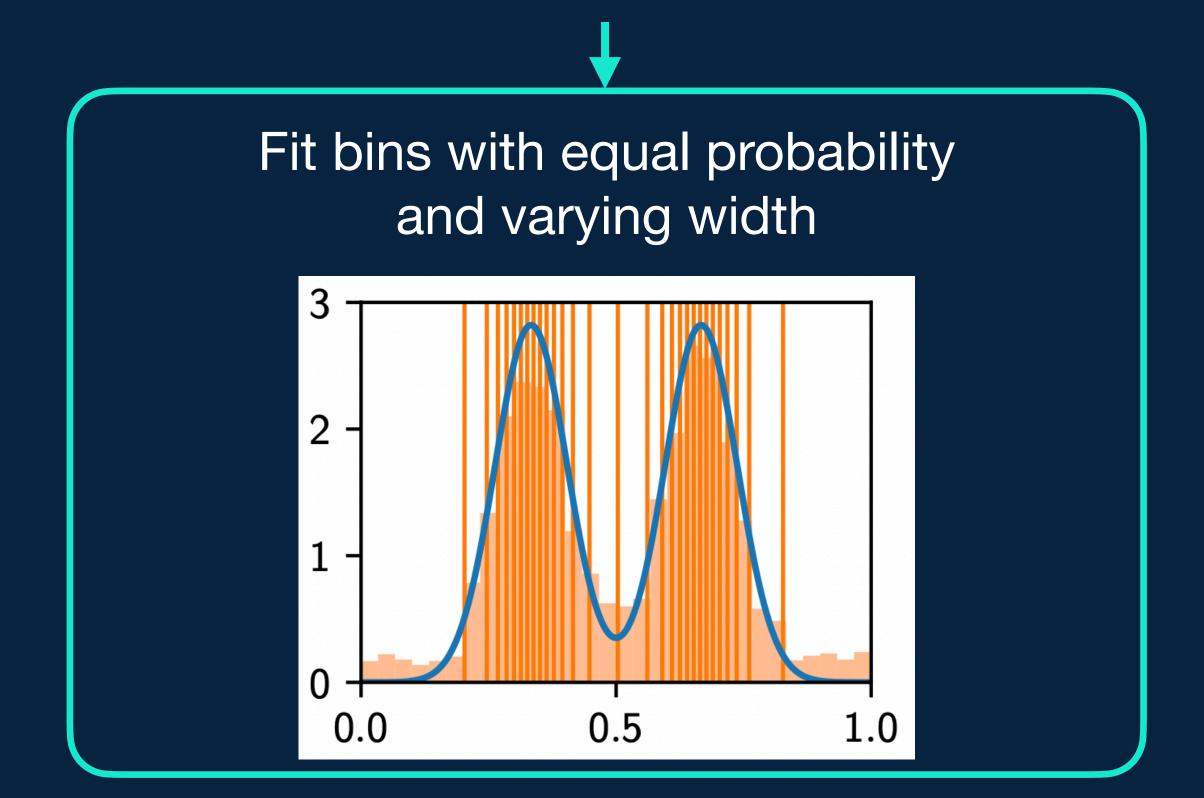
Channel mappings

MadGraph: use amplitude structure, ...
refine with VEGAS
(factorized, histogram based
importance sampling)

Importance sampling — VEGAS

Factorize probability

$$p(x) = p(x_1) \cdots p(x_n)$$



Importance sampling — VEGAS

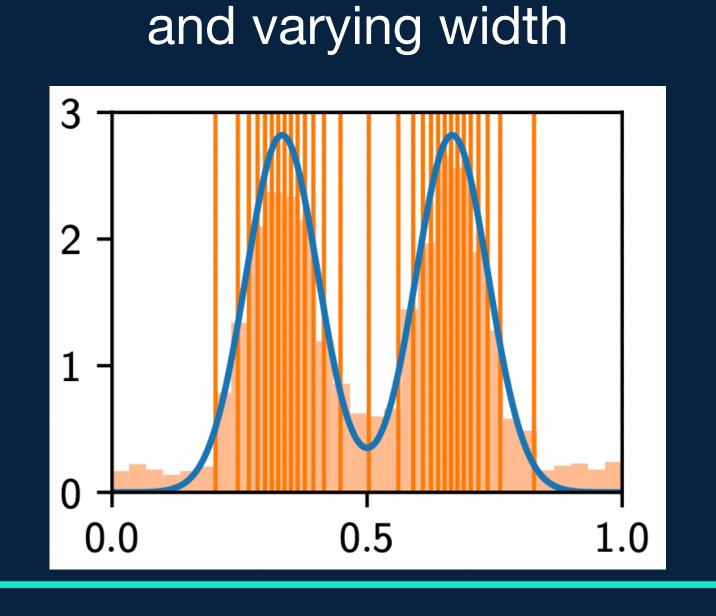
Factorize probability

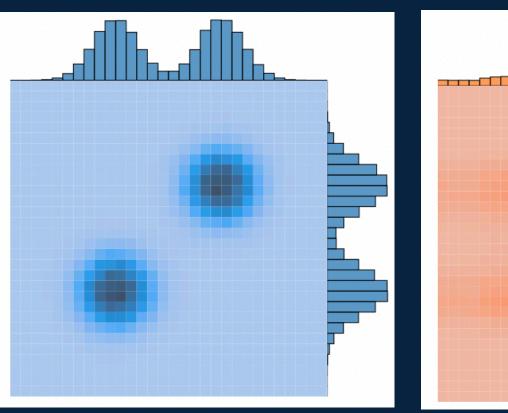
$$p(x) = p(x_1) \cdots p(x_n)$$

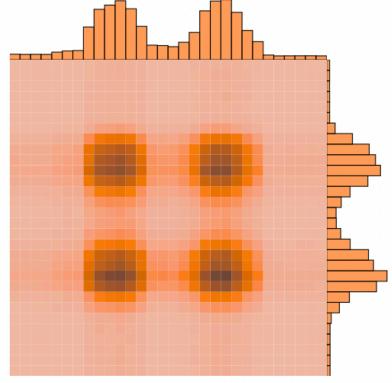
Fit bins with equal probability

Computationally cheap

- High-dim and rich peaking functions
 - → slow convergence
- Peaks not aligned with grid axes
 - → phantom peaks







MadNIS

Neural Importance Sampling

MadNIS — Neural Importance Sampling

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Use physics knowledge to construct channel and mappings

Normalizing flow to refine channel mappings

Fully connected network to refine channel weights

Update simultanously with variance as loss function

Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements

MadEvent channel mappings

Improved multi-channeling

Stratified sampling/training

Symmetries between channels

Channel Dropping

Partial weight buffering

Improved training

VEGAS Initialization Buffered Training

Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements MadEvent channel mappings

innel pings

Stratified sampling/training

Symmetries between channels

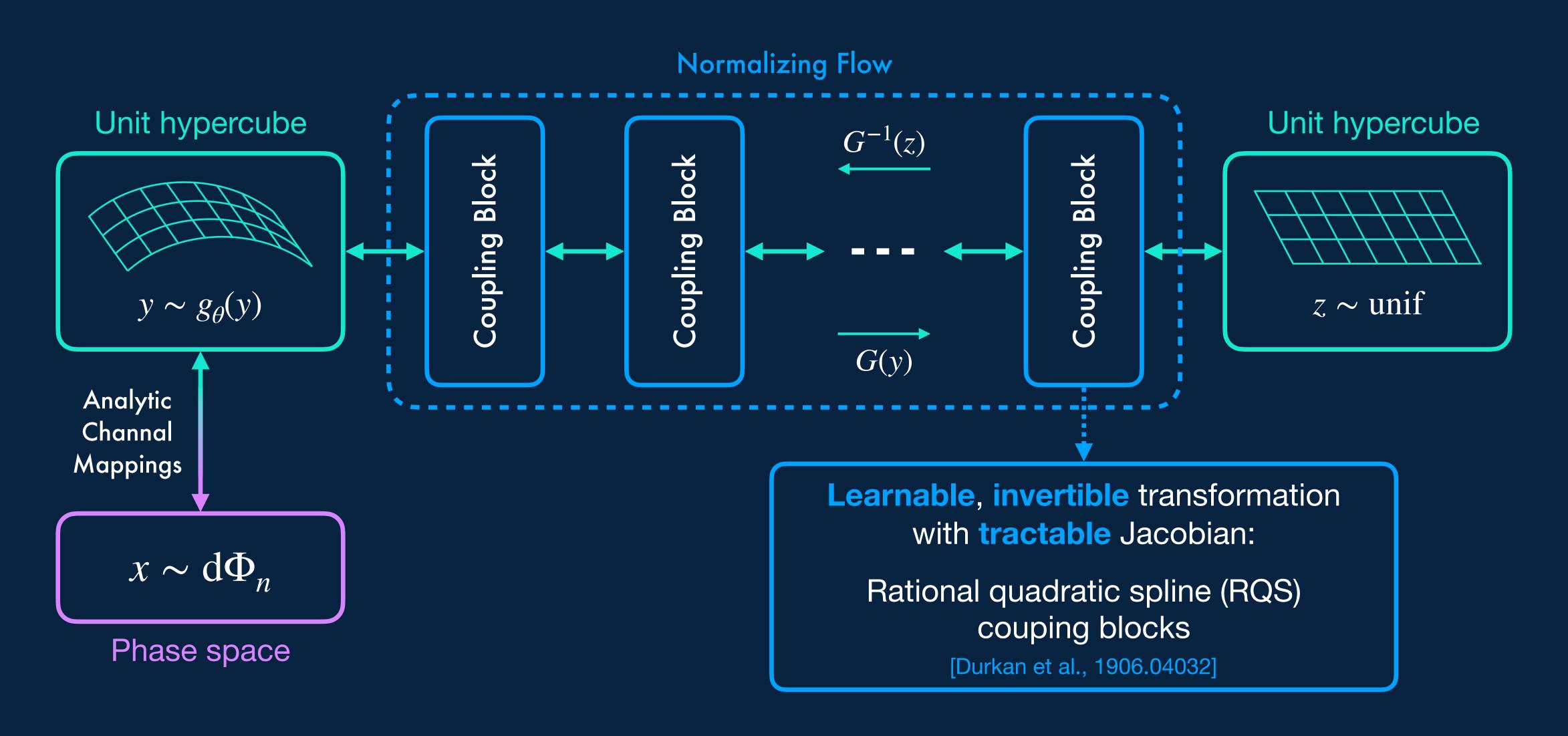
Channel Dropping

Partial weight buffering

Improved training

VEGAS Initialization Buffered Training

Neural importance sampling



Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements

MadEvent channel mappings

Improved training

VEGAS Initialization Buffered Training

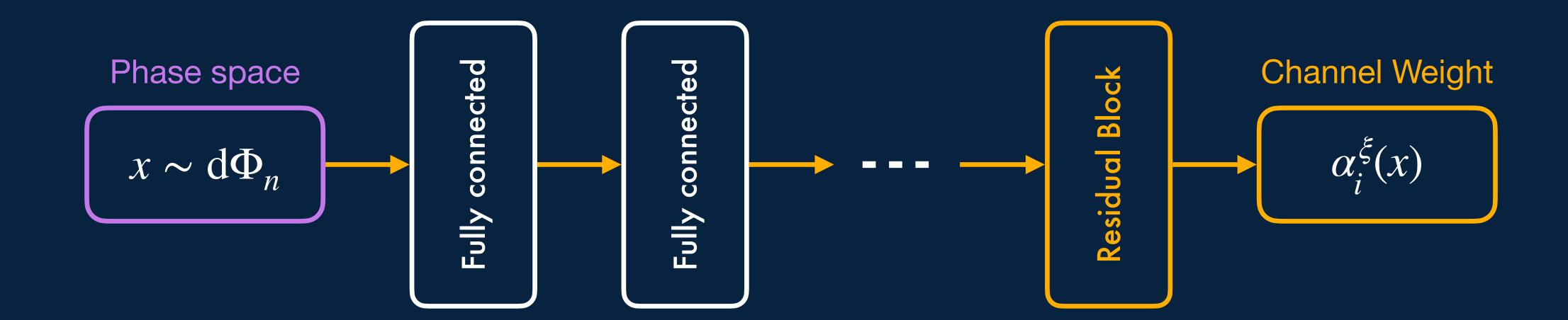
Improved multi-channeling

Stratified sampling/ training

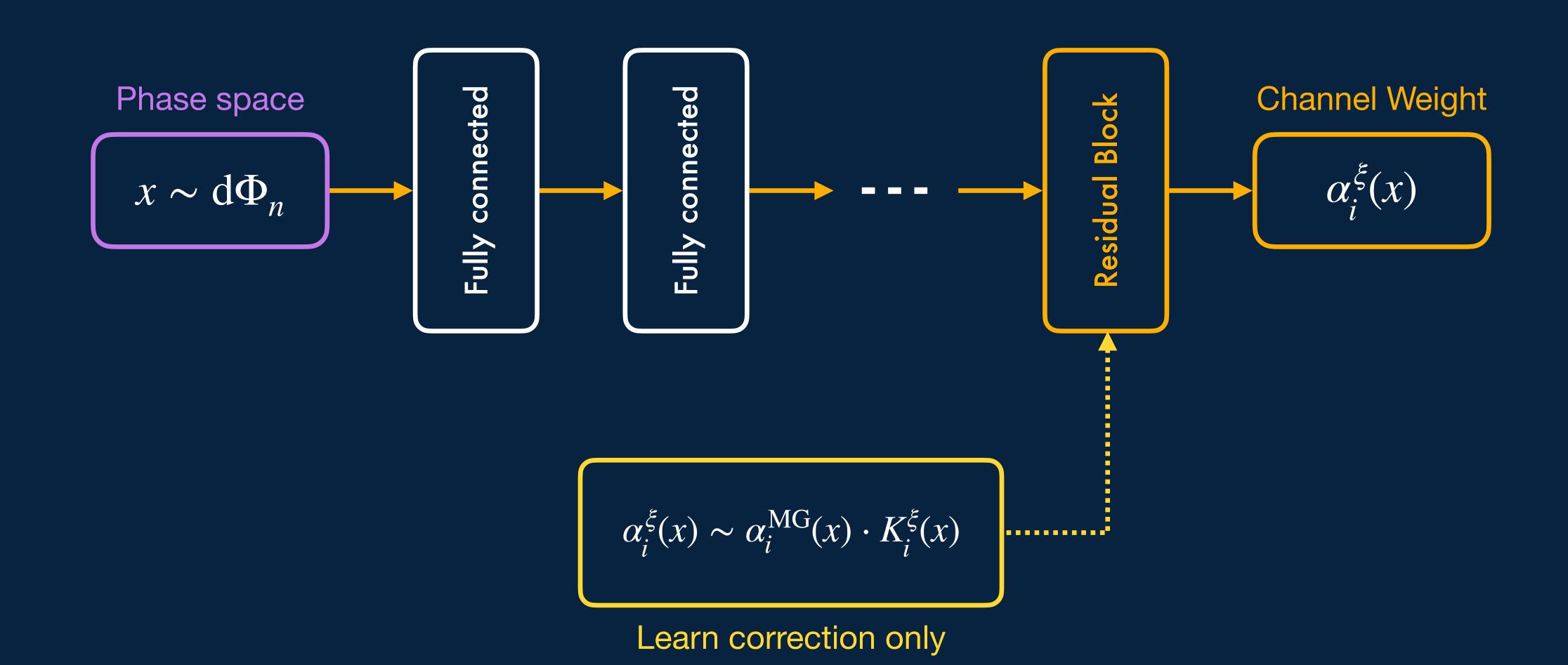
Symmetries between channels

Channel Dropping Partial weight buffering

Neural Channel Weights



Neural Channel Weights



Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements MadEvent channel mappings

Improved multi-channeling

Stratified sampling/training

Symmetries between channels

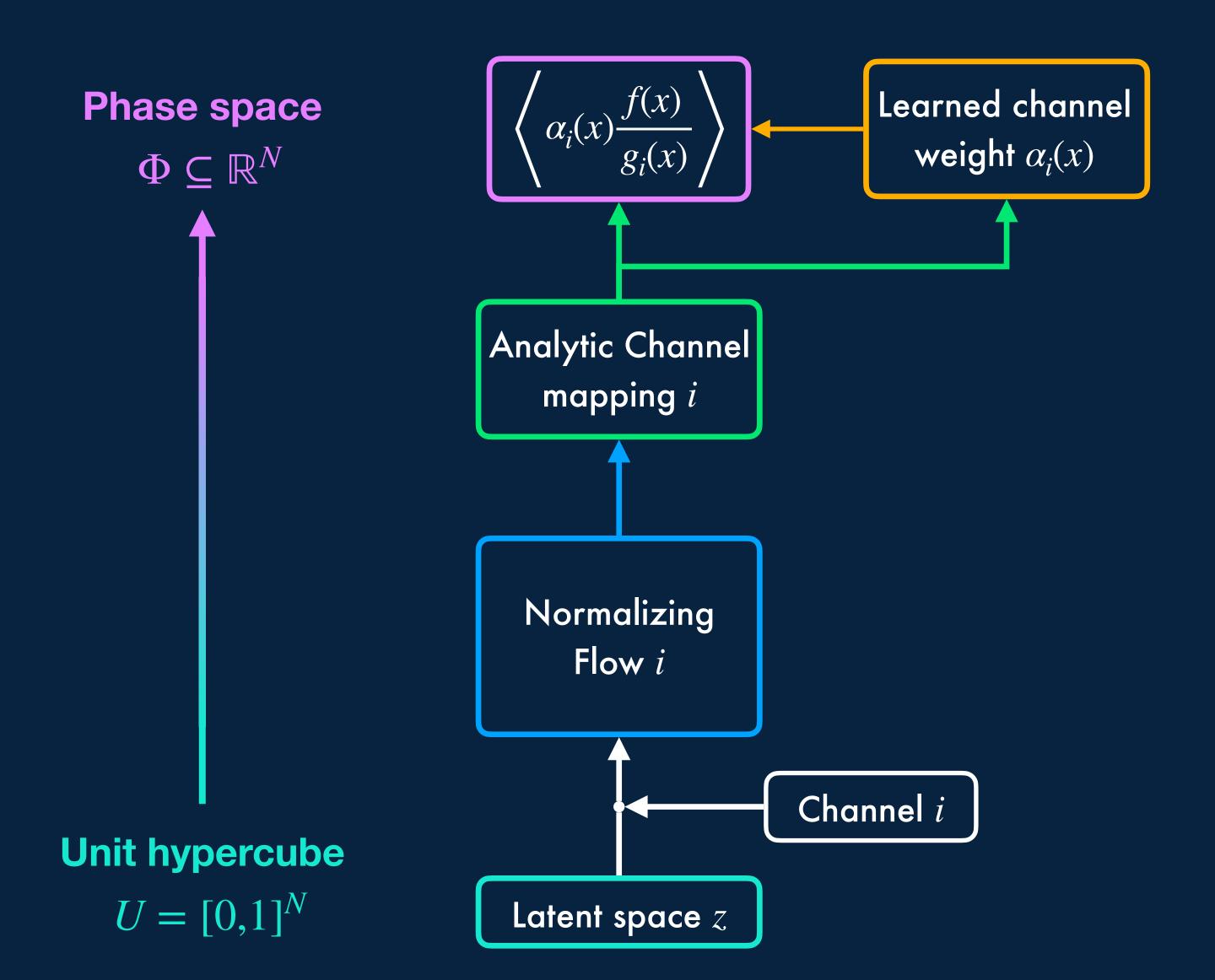
Channel Dropping

Partial weight buffering

Improved training

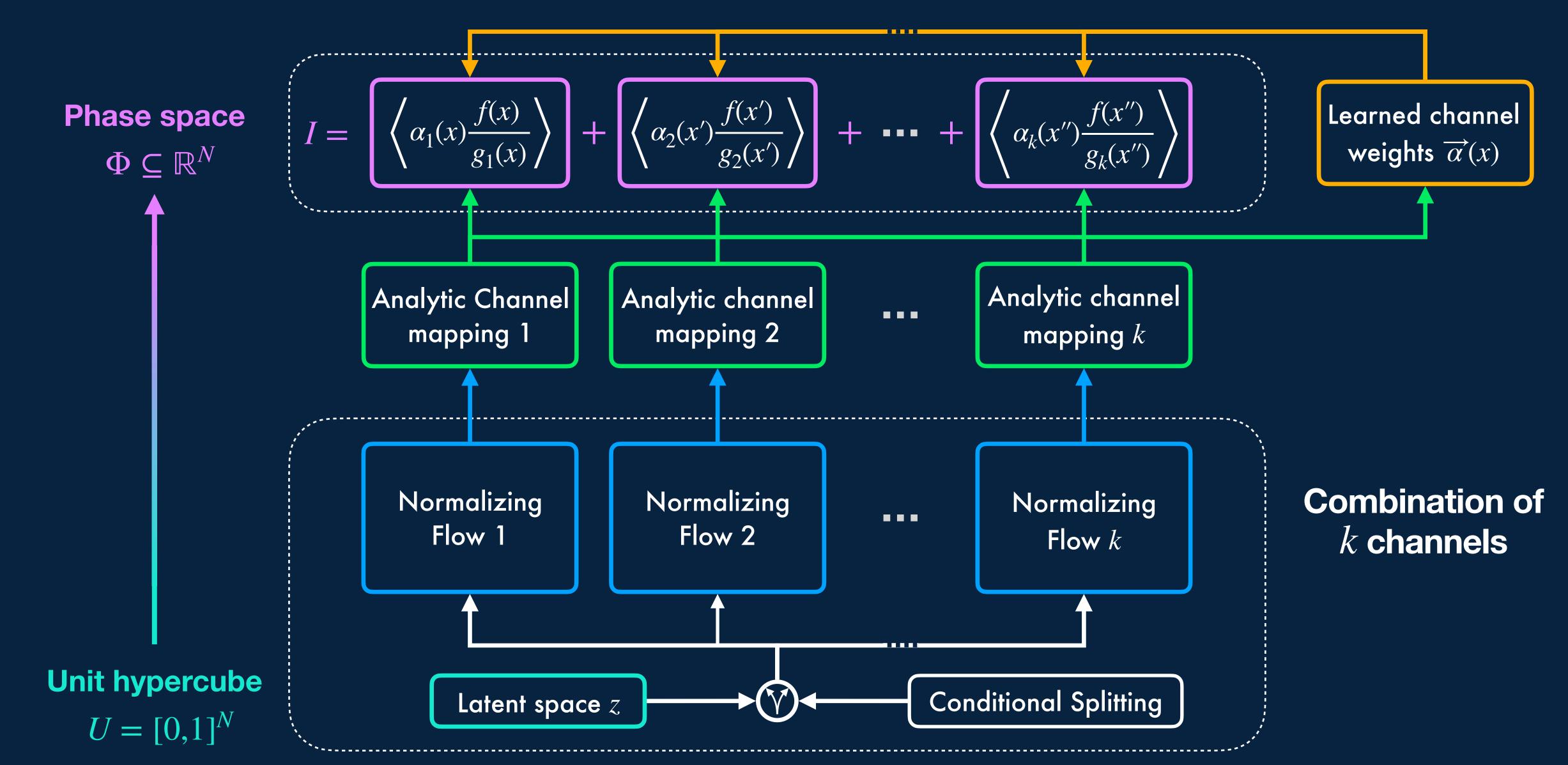
VEGAS Initialization Buffered Training

MadNIS — Neural Importance Sampling



Single channel i

MadNIS — Neural Importance Sampling



Loss function

Minimize total variance

$$\sigma_{\mathrm{tot}}^2 = N \sum_{i} \frac{\sigma_i^2}{N_i}$$
 with

$$\sigma_i^2 = \operatorname{Var}\left(\alpha_i(x) \frac{f(x)}{g_i(x)}\right)_{x \sim g_i(x)}$$

Total variance depends on N_i \downarrow affects optimal $\alpha_i(x)$ \downarrow use stratified sampling

$$N_i = N \frac{\sigma_i}{\sum_k \sigma_k}$$

Loss function

Minimize total variance

$$\sigma_{\mathrm{tot}}^2 = N \sum_{i} \frac{\sigma_i^2}{N_i}$$
 with

$$\sigma_i^2 = \text{Var}\left(\alpha_i(x) \frac{f(x)}{g_i(x)}\right)_{x \sim g_i(x)}$$

Total variance depends on N_i

affects optimal $\alpha_i(x)$

use stratified sampling

$$N_i = N \frac{\sigma_i}{\sum_k \sigma_k}$$

$$\mathcal{L} = \sigma_{\text{tot}}^2 = \left(\sum_i \sigma_i\right)^2$$

Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements MadEvent channel mappings

Improved multi-channeling

Stratified sampling/training

Symmetries between channels

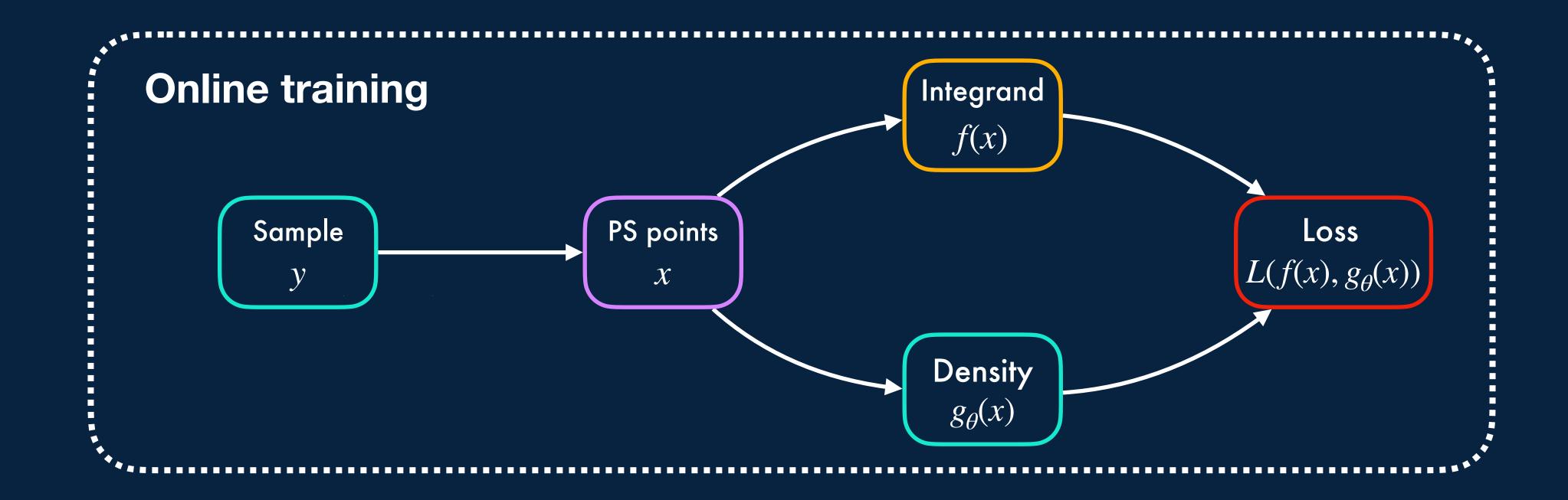
Channel Dropping

Partial weight buffering

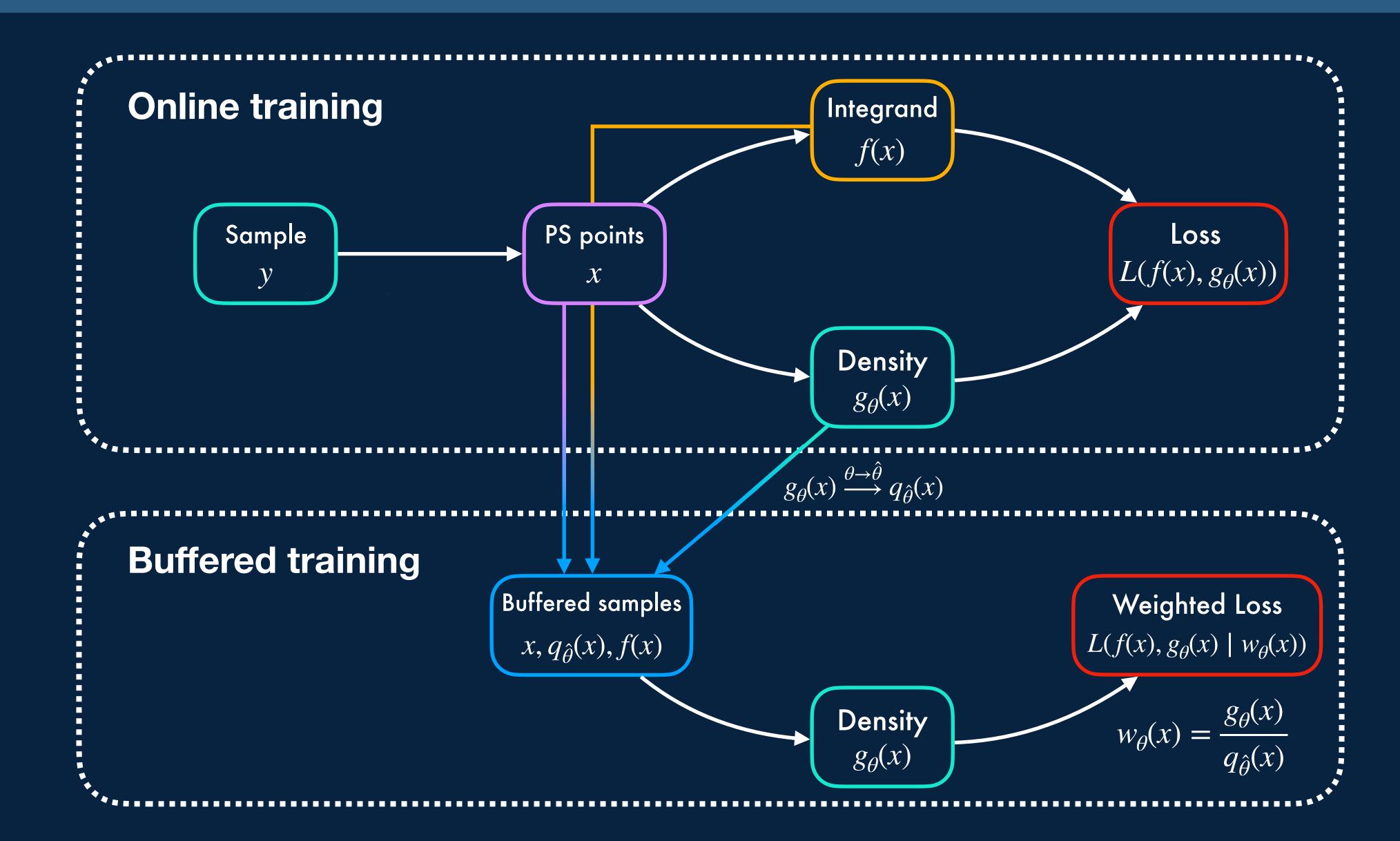
Improved training

VEGAS Initialization Buffered Training

Buffered training



Buffered training



Buffered training

Training algorithm

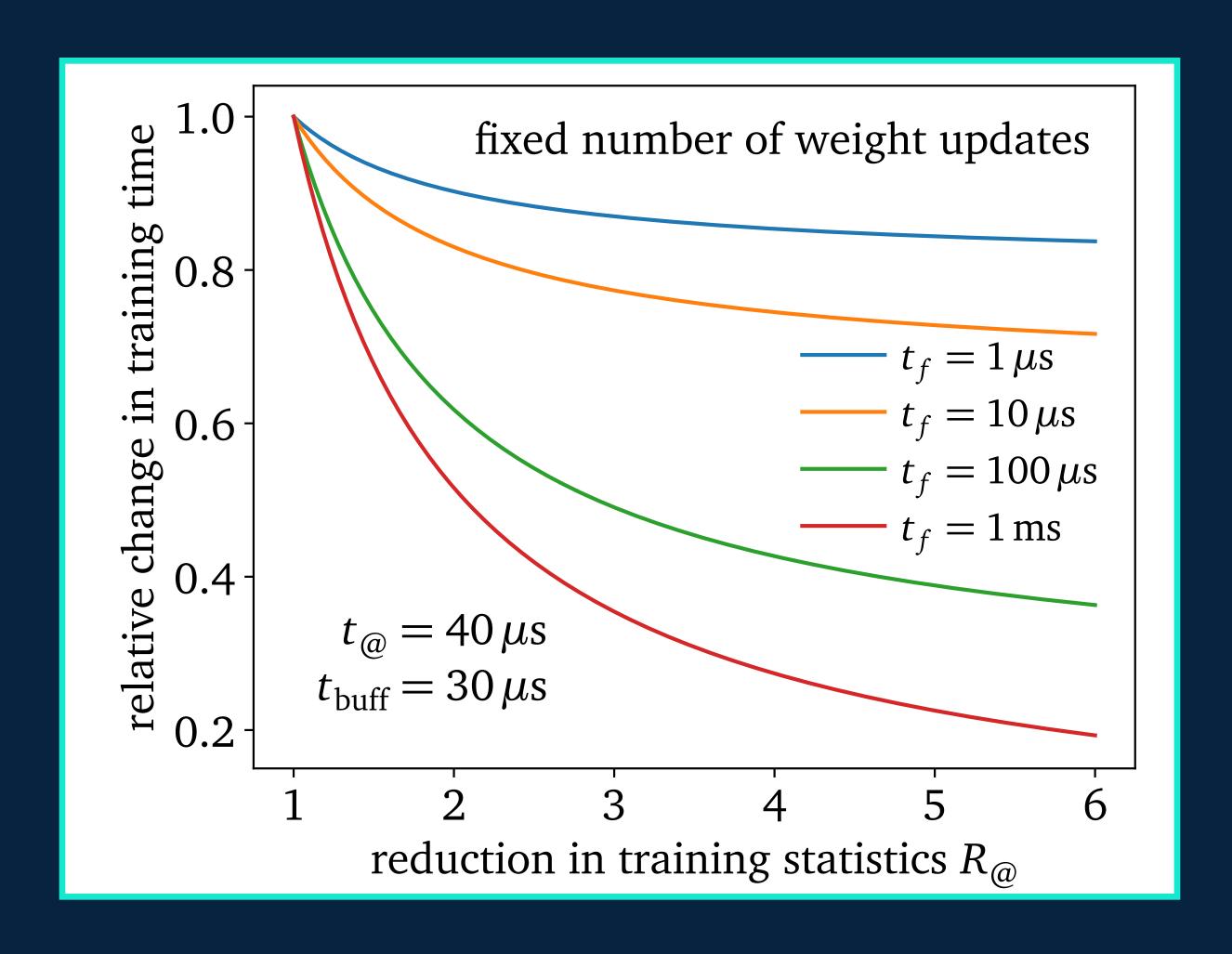
generate new samples, train on them, save samples

train on saved samples n times

repeat

Reduction in training statistics by

$$R_{@} = n + 1$$



Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements

MadEvent channel mappings

Improved multi-channeling

Stratified sampling/ training

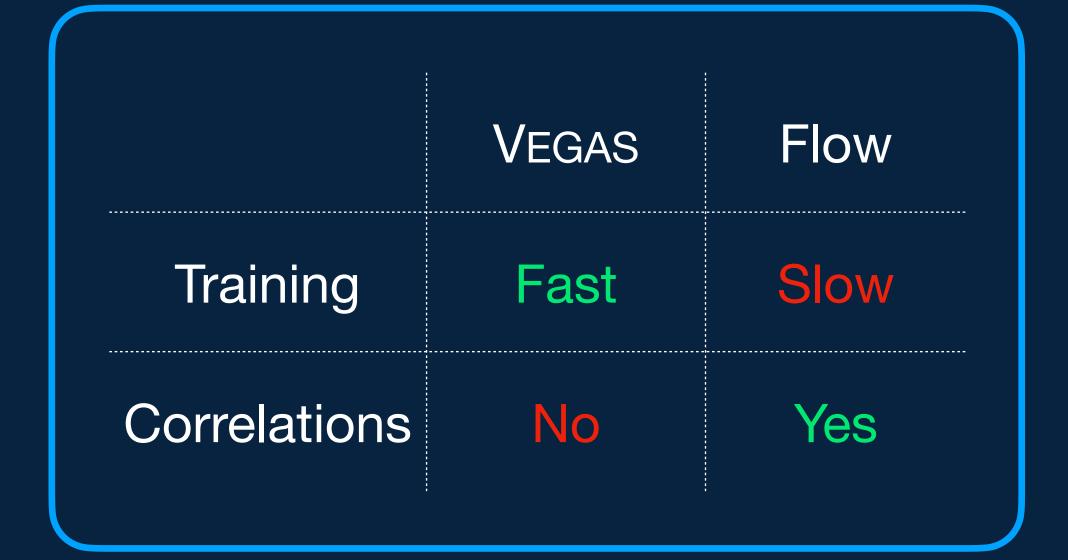
Symmetries between channels

Channel Dropping Partial weight buffering

Improved training

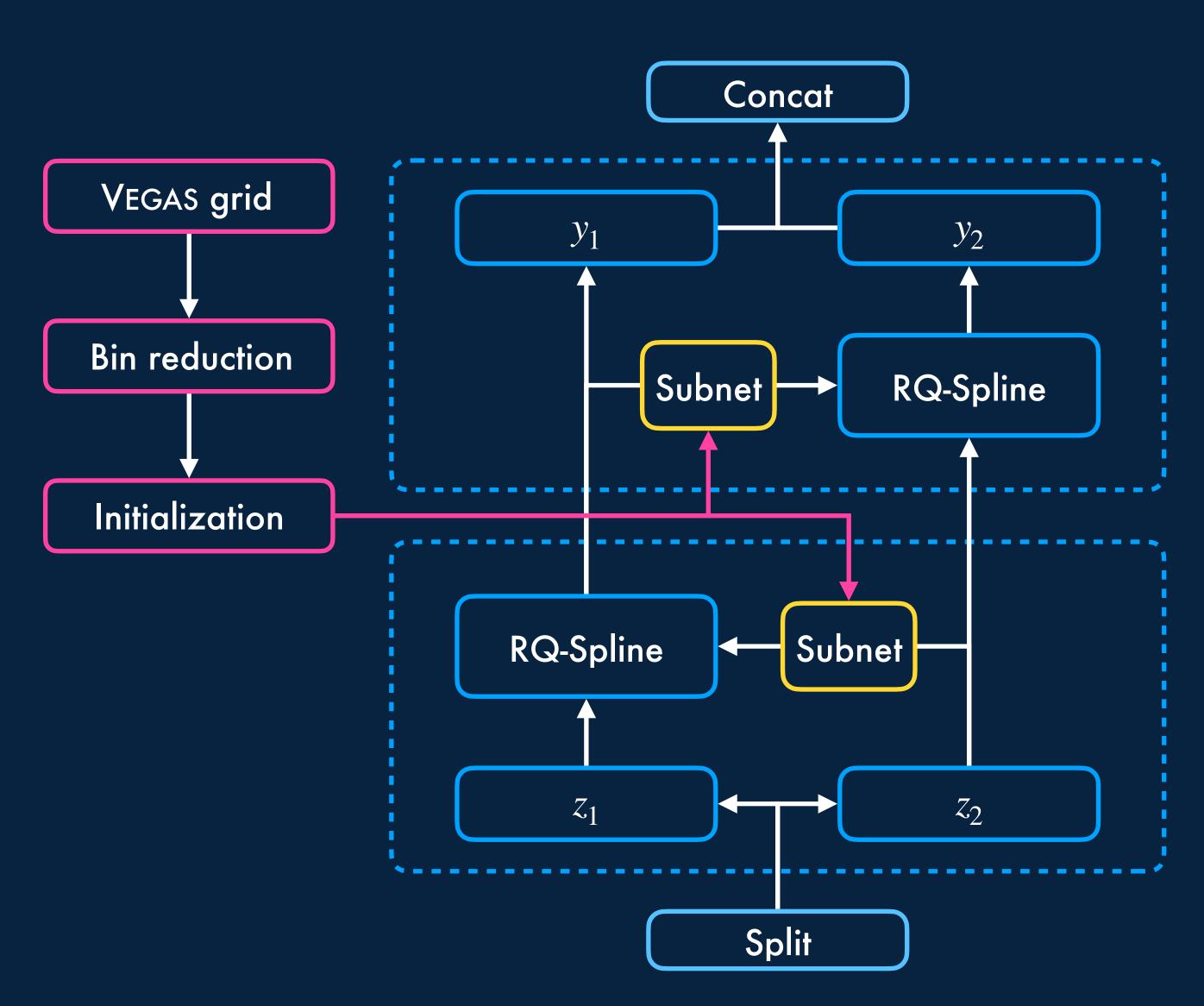
VEGAS Initialization Buffered Training

VEGAS initialization



Combine advantages:

Pre-trained VEGAS grid as starting point for flow training



Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements MadEvent channel mappings

Improved multi-channeling

Stratified sampling/training

Symmetries between channels

Channel Dropping

Partial weight buffering

Improved training

VEGAS Initialization Buffered Training

Improved multi-channeling

Use symmetries

Groups of channels only differ by permutations of final state momenta

use common flow and combine in loss function

Stratified training

Channels have different contributions to the total variance

more samples for channels with higher variance during training

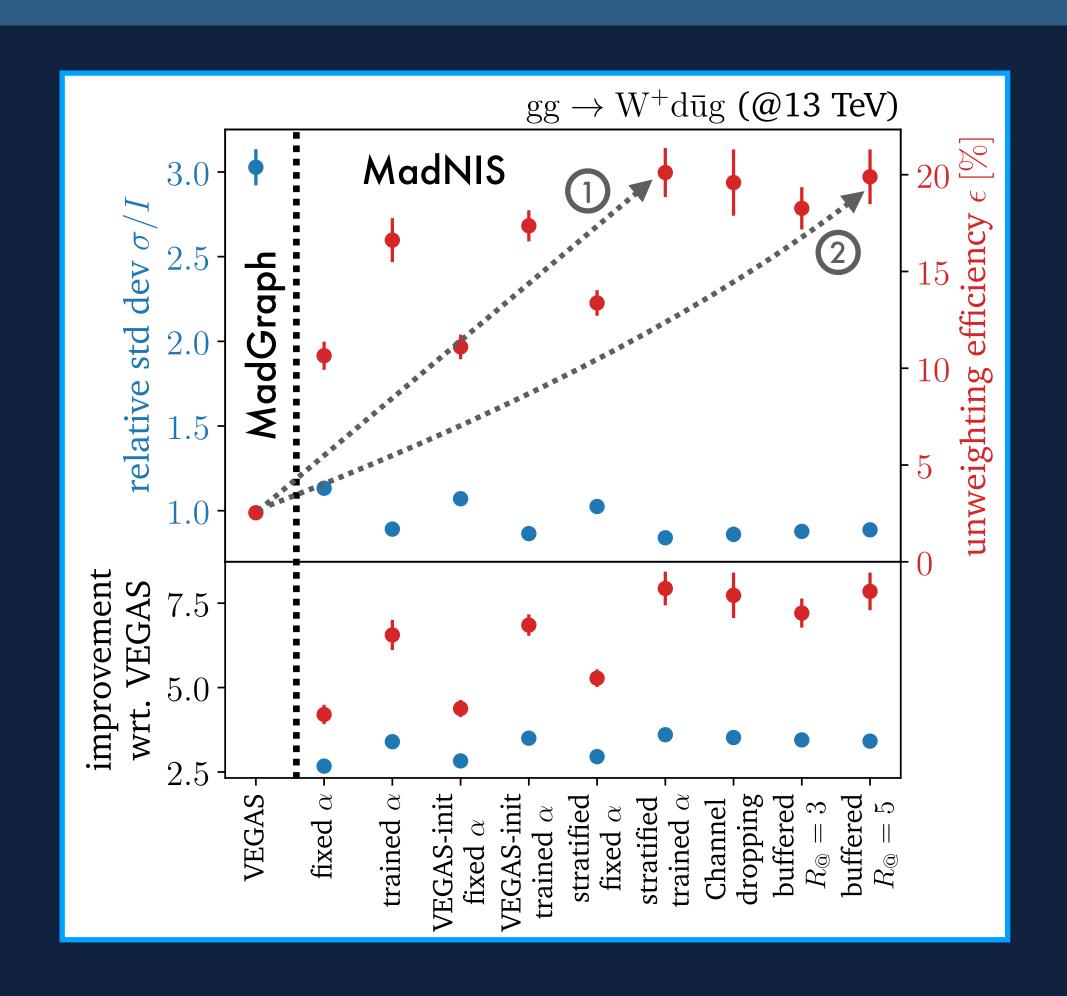
Channel dropping

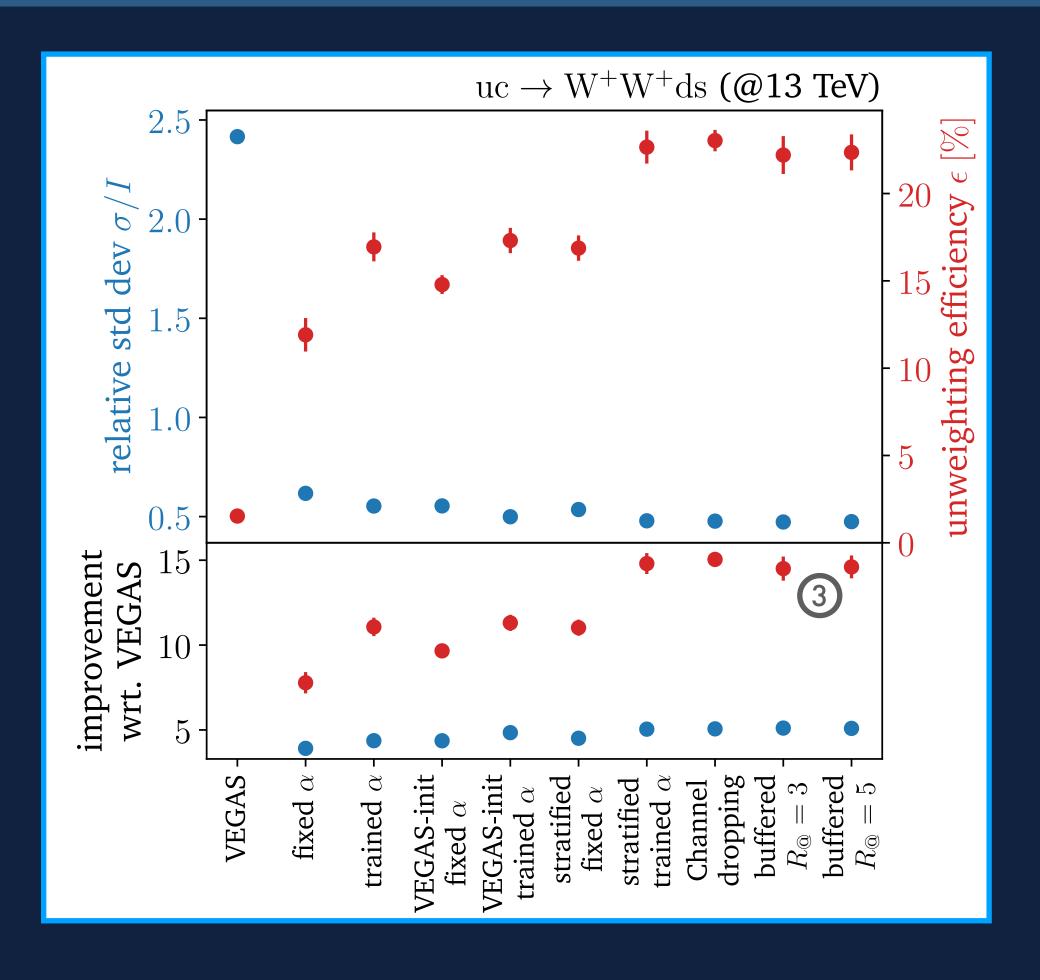
MadNIS often reduces contribution of some channels to total integral

remove these channels from the training completely

Reduced complexity Improved stability

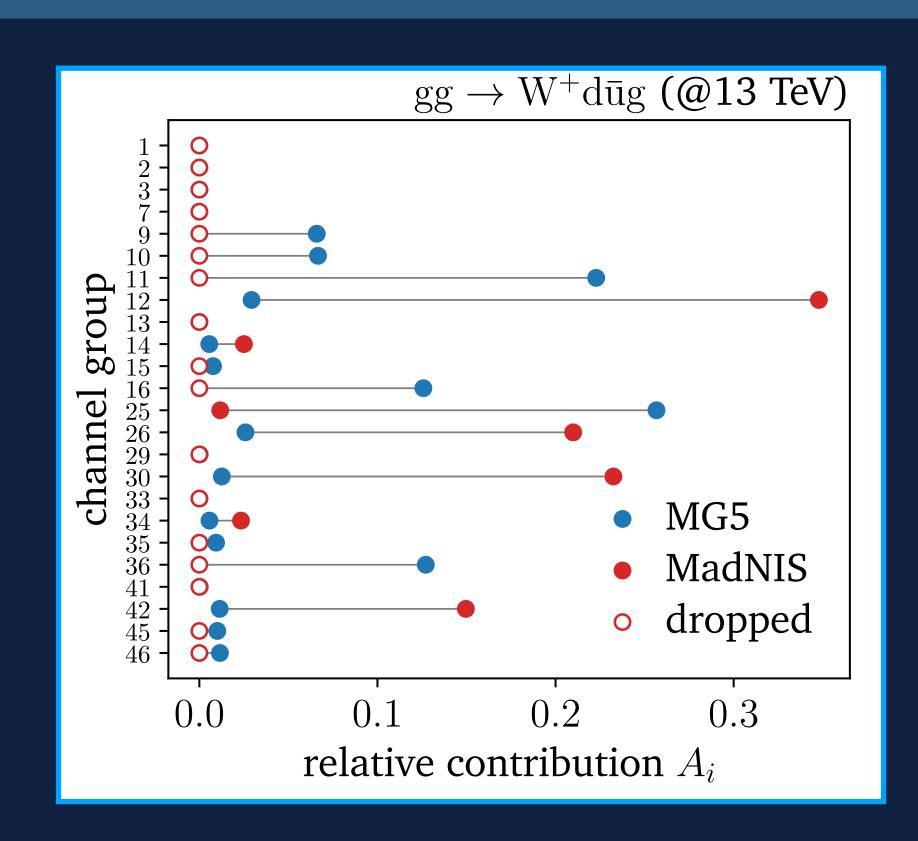
LHC processes

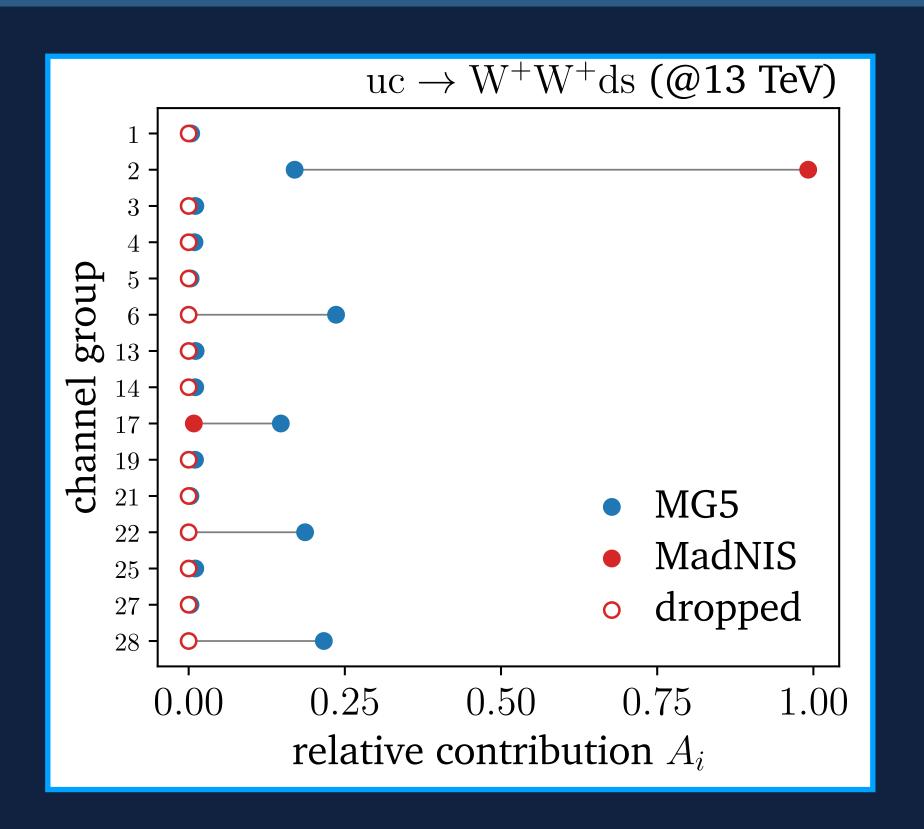




- 1. excellent results with all improvements
- 2. same performance with buffered training
- 3. Larger improvements for processes with large interference terms

Learned channel weights



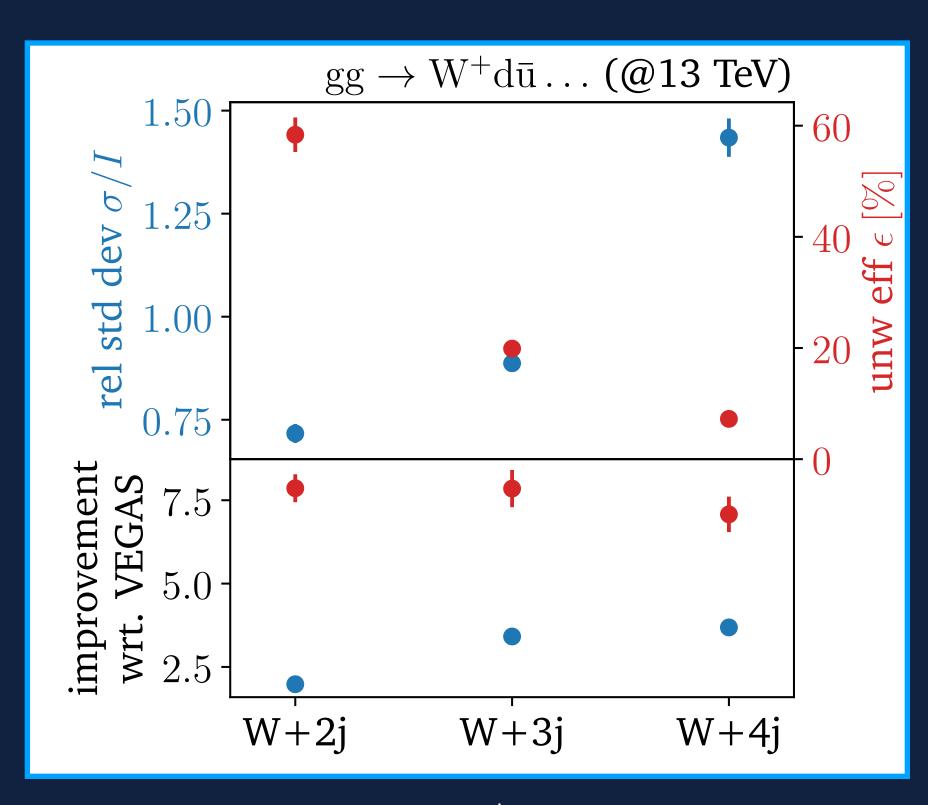


In MadNIS many channels are zero

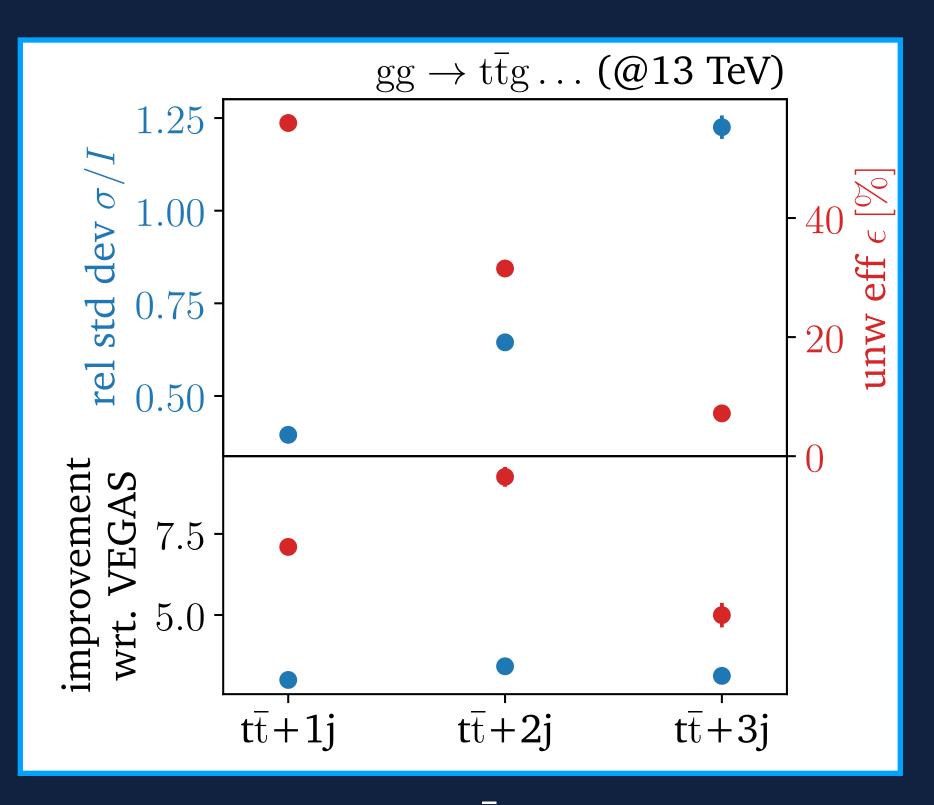
that droppig channels

more efficient training and event generation

Scaling with multiplicity



 $gg \rightarrow W^+ d\bar{u}gg$ 384 channels, 108 symm. 7x better than VEGAS



 $gg \rightarrow t\bar{t}ggg$ 945 channels, 119 symm. 5x better than VEGAS

Large improvements compared to VEGAS even for high multiplicities and many channels!

Outlook

The MadNIS Reloaded

Large improvements, even for high multiplicites and complicated processes!

Future plans

Make MadNIS part of next MadGraph version

