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Square parameter space, depending on the 
number of model parameters 
SSC (7 free parameters):  times. 
EIC (11 free parameters):  times.

106 − 107

> 107

files with size > 250 Gb 
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Change the model ?

Machine learning:

Make the model faster numerical code
approximations

semi-analytical + numerical code
factor of  gain but the model 

needs to be computed EVERY time
∼ 2

Latin hypercube sampling method is a widely popular technique in 
the creation of surrogate models as it presents several advantages. 
First, it allows to specify the number of simulations to be 
computed. As a byproduct, this method does not require to specify 
parameter spacing. Second, it ensures uniform sampling across all 
parameters. Lastly, it avoids the regular sampling of parameters, 
which is typical in grid scan techniques.

✓ Model will be computed once and can be 
used with different datasets. 

✓ It does not require a square parameter space, 
which makes it less computationally 
expensive.  It allows for model failure which 
can be removed from the training



Workflow of the method
Parameter sampling 

latin hypercube
Spectra 

generation Training

 
parameter  

sets

2 × 105

Ronswanson SOPRANO
  

photon  
spectrum

2 × 105

Training CNN

80 % 10 %10 %

testtrain validation

Bégué, Sahakyan, et al., 2024, ApJ, 963, id.71 



Parameter Sampling
synchrotron self Compton

External inverse Compton

This large range of parameters guarantees that  
any blazar SED can be reproduced.

Bégué, Sahakyan, et al., 2024, ApJ, 963, id.71 

Sahakyan, Bégué, et al., 2024, arXiv:2402.07495 



Spectrum generation: Time dependent approach

∂Ne±

∂t
= Qμ + Qpγ→e+e− + Qγγ→e+e−CIC + Csynch

∂Np

∂t
= Cpγ→pπ + Cpγ→e+e− + Csynch − Sγp→nπ + Qγn→pπ

∂Nn

∂t
= − Snγ→pπ + Qpγ→nπ + Cnγ→nπ

∂Nπ±

∂t
= Qpγ→π + Qnγ→π − Sπ + Csynch

∂Nμ

∂t
= Qπ±

− Sμ + Csynch

∂Nν,ζ

∂t
= Qπ±

+ Qμ

Q: sink term S: source term C: cooling term

injection cooling particle spectrum SED
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Computation

 
parameter  

sets

2 × 105

SOPRANO
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Monitoring the data

The average simulation time is 43.7 s per spectra, with a 
long tail extending beyond 700 s. These extended 
durations correspond to spectra characterized by a high 
compactness with small radius R, large electron 
luminosity Le, and small injection Lorentz factor gmin.

The computation of the spectra by SOPRANO can fail. The solution is obtained with the 
Newton–Raphson root finding algorithm, which can, in some instances, not converge 
toward the solution with the required accuracy ( ), close to machine accuracy.  The 
total number of spectra with at least one failed time iteration is 3693, constituting fewer 
than 2% of all calculated spectra.  From the distribution of the maximum error across a full 
simulation is evident that only a small fraction of the spectra are unreliable, with most 
spectra having a maximal error below .

10−15

10−10
Bégué, Sahakyan, et al., 2024, ApJ, 963, id.71 



Spectra from SOPRANO:  
150 energy bins

Step 1: log the data 
Step 2: remove the mean 
Step 3: detrend 
Step 4: normalise amplitude to [-1,1]

P1 . . . . . P7

train

Modeling the relationship 
between the input parameters and 

their corresponding spectra
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Convolutional Neural Networks 
(CNNs)

CNNs, initially designed for image analysis, have evolved to become versatile tools for processing sequential data, 
including time series. Their ability to automatically extract hierarchical features makes them well-suited for capturing 
complex temporal dependencies present in time series data.
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The neural network 
A deep network is not necessary to produce an accurate representation of the numerical model. The CNN 
contains only eight layers in this order: a first dense layer transforms the seven inputs to a high dimensional 
vector, five 1D convolutional layers with different kernel sizes and strides, one maxpooling layer followed 
by a 1D convolutional layer, and a final dense layer, mapping to the 150 outputs.

Bégué, Sahakyan, et al., 2024, ApJ, 963, id.71 Sahakyan, Bégué, et al., 2024, arXiv:2402.07495 



Final results
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Workflow of the method

Bégué, Sahakyan, et al., 2024, ApJ, 963, id.71 



Workflow of the method

Model average time:  sec∼ 30

CNN time:  sec∼ 0.04

Bégué, Sahakyan, et al., 2024, ApJ, 963, id.71 



Application

The trained CNN is used with multinest to fit the broadband SEDs of 4 blazars

BL Lacs 
The emission lines are weak or absent

FSRQs 
Strong emission lines

Mrk 421 

1ES 1959+650

3C 454.3 

CTA 102

3C 454.3Mrk 421



Results
Synchrotron self-Compton model

➡ Mrk 421 (z = 0.031, data from MW campaign in 2009) 

    1ES 1959+650

The broadband SEDs of Mrk 421 during the 4.5 month long multiwavelength 
campaign in 2009. The data and the errors are in blue, the red line is the model 
corresponding to the best parameters, i.e., maximizing the likelihood, and the 
gray spectra represent one in 10 randomly selected samples from the MCMC 
sampling, representing the model uncertainty.

Parameter posterior distributions for Mrk 421 during the multiwavelength campaign of 2009. The 
contours give, from outward to inward, the 20%, 40%, and 75% confidence regions. Apart from the 
radius R, all parameters are well constrained. 

Bégué, Sahakyan, et al., 2024, ApJ, 963, id.71 



Results
Synchrotron self-Compton model

      Mrk 421 

➡ 1ES 1959+650 (z = 0.031, data from MW campaign in 2009)

The broadband SEDs of 1ES 1959+650 on the 2016 June 14 . The data and the 
errors are in blue, the red line is the model corresponding to the best 
parameters, i.e., maximizing the likelihood, and the gray spectra represent one 
in 10 randomly selected samples from the MCMC sampling, representing the 
model uncertainty.

Parameter posterior distributions for 1ES 1959+650. The magnetic field, the electron luminosity, and 
the electron index are well constrained. In contrast, the other parameters remain somewhat 
unconstrained due to the high uncertainty in the position of the peak energy of the synchrotron bump.Bégué, Sahakyan, et al., 2024, ApJ, 963, id.71 



Results
External inverse Compton

➡ 3C 454.3 (z = 0.859) 

      CTA 102

Multiwavelength SED of 3C 454.3, presented in blue. The model 
corresponding to the maximum likelihood is shown by the solid red line, 
while the uncertainty associated with the model is depicted in gray.

Parameter posterior distributions from the SED modeling of 3C 454.3 for the period MJD 55519.59- 
55520.19 

Sahakyan, Bégué, et al., 2024, arXiv:2402.07495 



Results
External inverse Compton

      3C 454.3 

➡ CTA 102 (z = 1.037)

Multiwavelength SED of CTA 102, presented in blue. The model 
corresponding to the maximum likelihood is shown by the solid red line, 
while the uncertainty associated with the model is depicted in gray. the red 
dashed line represents the scenario for which the radius is larger and the 
emission is due to SSC Parameter posterior distributions for CTA 102, showing a bimodal distribution for the radius R 

alongside other parameters. 

Sahakyan, Bégué, et al., 2024, arXiv:2402.07495 
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Conclusions
Astrophysical data in the 1970s were sent by post on magnetic tape. 

There is now exponential growth in astronomical data volumes, driven by 
advancements in observational technologies and an increasing number of 
telescopes observing in different bands. 

AI and ML have revolutionized our approach to studying the universe, aiming to 
uncover hidden characteristics within data, enabling faster simulations, 
improved observations, and deeper understandings of cosmic phenomena. 

Astrophysical research will largely benefit from new developments in AI/ML.


