

A Surrogate Model to Optimize Injection Efficiency in PSI muEDM Experiment

Ritwika Chakraborty (PSI)

European AI for Fundamental Physics Conference Amsterdam

02.05.2024

Muons in a Storage Ring

Muons Electric Dipole Moment (EDM)

In general, relativistic muons, in presence of electric fields + magnetic field

Thomas-BMT equation for spin dynamics in EM fields:

$$\vec{\Omega} = \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \left(a + \frac{1}{1-\gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \frac{\gamma c}{(\gamma+1)} \left(\vec{\beta} \cdot \vec{E} \right) \vec{\beta} \right]$$

g-2 term EDM term

- Non-zero muon EDM indicates CP-violation
- Standard model prediction $\sim 10^{-38}$ e.cm
- PSI muon EDM sensitivity target 6 x 10⁻²³ e.cm $\rightarrow \sim$ 3 order of magnitude better than current limit

Frozen Spin Technique

•
$$E \perp B \perp \beta$$

 $\vec{\Omega} = \frac{q}{m} \left[a\vec{B} - \frac{a\gamma}{(\gamma+1)} (\vec{\beta} \cdot \vec{B})\vec{\beta} - \left(a + \frac{1}{1-\gamma^2}\right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \frac{\gamma c}{(\gamma+1)} (\vec{\beta} \cdot \vec{E})\vec{\beta} \right]$
g-2 term EDM term

• Suppress g-2 term by setting
$$a\vec{B} = \left(a - \frac{1}{\gamma^2 - 1}\right)\frac{\vec{\beta} \times \vec{E}}{c}$$

• Radial E-field $E_{\rm f} pprox aBc\beta\gamma^2$

$$\vec{\omega}_e = \frac{\eta q}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}_{\rm f}}{c} \right]$$

Precession frequency only due to EDM

PSI muEDM Experiment

- Sampling input variables
- Sobol distribution (Sobol, 1967)

• Maximum uniform spread

Pulse peak-time [ns]

Initial design

Update design variables based

variables

on objective evaluation variables evaluation Repeat until optimal solution found Update design variables Required to run simulation thousands of times \rightarrow computationally expensive • Replace physics simulation with approximation \rightarrow surrogate model Surrogate model for objective **Design** objective Initial design variables evaluation evaluation \rightarrow Many ways \rightarrow PCE and NN models explored Update design

Design objective

• Polynomial Chaos Expansion (PCE) :

$$Y = \sum_{i=0}^{\infty} \alpha_i \Psi_i \left(\vec{x} \right)$$

 $Y \rightarrow$ Model response (injection efficiency), $\Psi_i \rightarrow$ Orthogonal polynomials $x \rightarrow$ input variables, $\alpha_i \rightarrow$ expansion coefficients

- Polynomial basis based on input variable distribution
- Coefficients determined using regression based methods

$$\vec{\alpha} = \operatorname{Argmin} \frac{1}{N} \sum_{j=1}^{N} \left\{ f(\vec{\xi}^{j}) - \sum_{i=0}^{P-1} \alpha_{i} \Psi_{i}\left(\vec{x}^{j}\right) \right\}^{2}$$

NN Surrogate Model

- Use the input (design) and output (objective) to train a neural network
- Hyper parameters: \rightarrow no. of hidden layers = 8
 - \rightarrow no. of neurons/layer = 500
 - \rightarrow learning rate = 0.001
 - \rightarrow optimizer: Adam¹
 - \rightarrow scheduler: ReduceLRonPlateaue²
 - \rightarrow activation function: LeakyReLu³

¹ Kingma and Ba, 2014 ² Maas, 2013 ³ K Developers, 2019

Surrogate Model Performance

Model performance for a 6 dimensional input space (Kicker timing, Kicker strength, Corr coil position, Corr coil length, Corr coil thickness and Corr coil radius)

PCE Mean Square Error: 3.47 e-08

NN Mean Square Error: 1.88 e-08

Multi-objective Optimization

Initial population "Individuals"

Surrogate model based NSGA-II¹ performance

Optimization to maximize Injection Efficiency/minimize Power Dissipation

10³ speed up for PCE Surr and 10⁴ speed up for NN Surr

 Agreement within 5% vs 2% for PCE/NN based GA performance for average injection efficiency of 0.35%
 ¹ Deb 2002

Summary

- PSI muEDM experiment will be most precise muon EDM measurement to date → setup needs to be carefully optimized
- Running simulations iteratively is bottleneck in optimization process
- Orders of magnitude speed up can be achieved by replacing physics simulation by surrogate model
- Genetic algorithm NSGA-II used to run multi-objective optimization
- PCE and NN surrogate models based GA investigated; $\sim 10^3$ speed up for PCE, $\sim 10^4$ for NN
- Plan to expand into Bayesian optimization where higher dimensional input space can be implemented with straightforward uncertainty quantification techniques

Acknowledgments

The muEDM Collaboration (Spring meeting 2024)

- Computational resources: PSI Local High Performance Computing cluster, Merlin6, Siyuan-1 cluster supported by the Center for High Performance Computing at Shanghai Jiao Tong University and the Euler cluster operated by the High Performance Computing group at ETH Zürich.
- Accelerator Modeling and Advanced Simulations (AMAS) group at PSI: A. Adelmann, S. Heinekamp and P. Juknevicius
- NN surrogate starting point: A. Holmberg Bachelor's Thesis ETH Zurich 2021

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

Swiss Confederation

Extra

The correspondence of the types of Wiener-Askey polynomial chaos and their underlying random variables ($N \ge 0$ is a finite integer).

	Random variables $\boldsymbol{\zeta}$	Wiener–Askey chaos $\{\Phi(\boldsymbol{\zeta})\}$	Support
Continuous	Gaussian	Hermite-chaos	$(-\infty,\infty)$
	gamma	Laguerre-chaos	$[0,\infty)$
	beta	Jacobi-chaos	[a,b]
	uniform	Legendre-chaos	[a,b]
Discrete	Poisson	Charlier-chaos	$\{0,1,2,\dots\}$
	binomial	Krawtchouk-chaos	$\{0,1,\ldots,N\}$
	negative binomial	Meixner-chaos	$\{0,1,2,\dots\}$
	hypergeometric	Hahn-chaos	$\{0,1,\ldots,N\}$

(Xiu and Karniadakis, 2002)

Total phase space after collimation

Neural Net hyperparameters

```
def init (self, input dimension, output dimension, n hidden layers,
            neurons, regularization param, regularization exp):
   super(net, self). init ()
   # Number of input dimensions n
   self.input dimension = input dimension
   # Number of output dimensions m
   self.output dimension = output dimension
   # Number of neurons per layer
   self.neurons = neurons
   # Number of hidden layers
   self.n hidden layers = n hidden layers
   # Activation function
   self.activation = nn.LeakyReLU()
   self.regularization param = regularization param
   self.regularization exp = regularization exp
   self.input layer = nn.Linear(self.input dimension, self.neurons)
   self.hidden layers = nn.ModuleList([nn.Linear(self.neurons, self.neurons) for in range(n hidden layers)])
   self.output layer = nn.Linear(self.neurons, self.output dimension)
   self.dropout = nn.Dropout(0.1)
```

```
# Random Seed for weight initialization
retrain = 134
# Xavier weight initialization
init xavier(my network, retrain)
```

```
optimizer_ = optim.Adam(my_network.parameters(), lr=le-3)#, weight_decay=le-5)
#optimizer_ = optim.LBFGS(my_network.parameters(), lr=0.1, max_iter=1,
# max_eval=50000, tolerance change=1.0 * np.finfo(float).eps)
```

scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer_, mode='min', factor=0.5, patience=500000)
#scheduler = optim.lr scheduler.StepLR(optimizer=optimizer , step size=50, gamma=0.5)

Neural Net activation function

6-d optimization parameter bounds

bounds = {"T_Offset": [80, 98], "BPI": [0.35,0.80], "CC_Len": [88, 150], "CC_Ir": [40, 84], "CC_Thick":[7,15], "CC_Pos":[166,241]}