

Self-supervision for data-driven anomaly detection at the LHC

EuCAIFCon 2024 - Amsterdam Luigi Favaro

In collaboration with B. Dillon, F. Feiden, M. Krämer, T. Modak, T. Plehn, J. Rüschkamp

May 2, 2024

Funded by

G Deutsche Forschungsgemeinschaft German Research Foundation

► Introduction

- ► Contrastive Learning
- Event anomalies
- ► Representing dark showers

- LHC does and will generate large amount of data:
- We are still looking for BSM physics:
- No clear anomalies in the near future
 - \rightarrow keep exploring with direct searches is not feasible:

Anomaly searches

credits to M. Krämer, cf. Karagiorgi, Kasieczka, Kravitz, Nachman, Shih, arXiv:2112.03769 [hep-ph]

- Density estimates used as agnostic anomaly scores;
- Only focus on density estimation of background:
 - can be used directly on data;
 - sensitivity requires dealing with large input spaces;
- Improved representation of the data is key...
 - $\longrightarrow\,$ Physics motivated preprocessing/observables.

$$OOD = \{x | p(x) < \epsilon\}$$

Datasets 1 Introduction

CMS Experiment al the LHC. CERN Data recorded: 2017 Nov 16 13:02:45:815734 GMT Rent Feer H.S. 536709 (2313144/201 1278

Reco events

* from CMS Open Data

Set of objects of variable length with features (p_T, η, ϕ)

Table of Contents2 Contrastive Learning

► Introduction

► Contrastive Learning

► Event anomalies

► Representing dark showers

*also discussed in Patrick's talk here

- Preprocessing solves many problems with neural networks;
 - NNs are not invariant to physical symmetries in data;
 - NNs like numbers of O(1);
- Self-supervision: during training we use pseudo-labels, not truth labels;
 - \longrightarrow task used to create new representations/observables;

Key aspects of representations:

- Invariance to certain transformations of the jet/event
- Discriminative power

In CLR we construct a mapping to a new representation space

*as in JetCLR, arXiv:210804253

- Pseudo-labels are defined from pairs:
 - $\{(x_i, x'_i)\}$: positive pair \rightarrow alignment/invariance;
 - $\{(x_i, x_j) \cup (x_i, x'_j))\}$: negative pair \rightarrow uniformity/discriminative;
- $f:\mathcal{R}
 ightarrow \mathcal{Z}$ is a transformer-encoder;
- $s(\cdot, \cdot)$ cosine distance in rep. space.

$$\mathcal{L} = -\log rac{exp(s(z_i, z_i')/ au)}{\sum \mathcal{I}_{i
eq j}[exp(s(z_i, z_j)/ au) + exp(s(z_i, z_j')/ au)]}$$

EuCAIFCon 2024

Augmentation: any transformation (e.g. rotation) of the original jet

- Example:
 - \longrightarrow detector invariance under rotations;
- Background data does not known BSM features.

Can we train a transformer-encoder network only on background events?

• Possible, but with no guarantee to learn representations sensitive to new physics;

Introduce general BSM motivated anomalous representations z^*

CLR for anomaly detection 2 Contrastive Learning

*from "Anomalies, representations, and self-supervision", arXiv:2301.04660

Contrastive Learning for anomaly detection:

- anomalous pairs: $\{(x_i, x_i^*)\}$ where x_i^* comes from a different set of augmentations;
- These are motivated by BSM features, general, and signal agnostic.

$$\mathcal{L}_{aCLR} = -\log \frac{exp(s(z_i, z'_i) - s(z_i, z^*_i)/\tau)}{\sum \mathcal{I}_{i \neq j}[exp(s(z_i, z_j)/\tau) + exp(s(z_i, z'_j)/\tau)]}$$
$$\mathcal{L}_{aCLR+} = -\log \exp^{(s(z_i, z'_i) - s(z_i, z_i^*))/\tau} = \frac{s(z_i, z^*_i) - s(z_i, z_i)}{\tau}$$

Table of Contents 3 Event anomalies

► Introduction

- ► Contrastive Learning
- Event anomalies
- ► Representing dark showers

- Cut-based OOD downstream task as a benchmark;
- (Normalized)AutoEncoder based anomaly score:

$$E_{\theta} = MSE(x, D(E(x)))$$
 $p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{\Omega};$

- for more details see arXiv:2206.14225;
- or posters IDs 146,95 for applications within CMS.

The corresponding anomaly score will be (approx) invariant to the augmentations

Reco events 3 Event anomalies

EuCAIFCon 2024

- Background data:
 - W
 ightarrow l
 u (59.2%);
 - Z
 ightarrow ll (6.7%);
 - QCD multijets (33.8%);
 - $t\bar{t}$ production (0.3%);
- Benchmark signals:
 - A
 ightarrow 4l;
 - $h^0
 ightarrow au au;$
 - $h^+ \rightarrow \tau \nu$;
 - LQ
 ightarrow b
 u;

- Event-level reconstructed objects:
 - (p_T,ϕ) of missing transverse energy;
 - (p_T,η,ϕ) of e, μ , and jets;
- Selection cuts:
 - one lepton with $p_T>23\,{
 m GeV};$
 - $|\phi| \in [-\pi,\pi]$, rescaled in [-1,1];
 - $|\eta| < 3, 2.1, 4$ for e, μ , jets, rescaled in (-1, 1);
- empty entries are zero-padded.

- Azimuthal rotations;
- (η,ϕ) and energy smearing.

- p_T and MET shifts;
- random multiplicity shifts;
- multiplicity shifts with MET and p_T constant.

Effect of new representation

3 Event anomalies

Better performance on all the BSM signals

Table of Contents4 Representing dark showers

► Introduction

- ► Contrastive Learning
- ► Event anomalies
- ► Representing dark showers

Jet substructure

4 Representing dark showers

New physics hidden in jet substructure;

Benchmark signal: semi-visible jets

- Z' = 2TeV dark sects mediator;
- q_d dark quarks charged under $SU(3)_d$;
- $m_{q_d} = 500 \text{MeV};$
- $\Lambda=m_{\pi_d}=m_{
 ho_d}=$ 5GeV;

QCD-like showers with fraction of invisible particles

* from "Semi-visible jets, energy-based models, and self-supervision", arXiv:2312.03067

^{*}studied in arXiv:2006.08639

New physics hidden in jet substructure;

Benchmark signal: semi-visible jets

- Jet constituents:
 - (p_T, η, ϕ) of each constituent;
 - $p_T \in [150, 350] \, {
 m GeV}, \, |\eta_j| < 2;$
- anti-kt clustering $\Delta R = 0.8$;
- empty entries are zero-padded.

 $r_{
m inv}=0.75, m_{
m d}=5{
m GeV} \longrightarrow$ referred to as "Aachen" model.

*from "Semi-visible jets, energy-based models, and self-supervision", arXiv:2312.03067

^{*}studied in arXiv:2006.08639

Augmentations 4 Representing dark showers

permutation invariance:

$$f(\mathbf{x}) = f(\mathcal{S}_n(\mathbf{x}))$$

Applying p_{drop} to a QCD jet:

 η

14/17 Self-supervision for anomaly detection

EuCAIFCon 2024

Robustness of darkCLR

4 Representing dark showers

Representations generalize over different pheno parameters

- ML can lead the future of anomaly searches;
- We can use CLR to learn powerful representations:
 - approximately invariant under transformations;
 - sensitive to BSM effects;
- Two examples of anomaly detection with CLR:
 - Event-level reconstructed objects;
 - Semivisible jets detection;

Outlook:

- Have a more interpretable latent space;
- More detailed study of systematic uncertainties.

Self-supervision for data-driven anomaly detection at the LHC

EuCAIFCon 2024 - Amsterdam Thank you for listening!

Any questions?

Backup

Transformer Encoder 6 Backup

Ablation studies 6 Backup

High-level features 6 Backup

