

Self-supervision for data-driven anomaly detection at the LHC

EuCAIFCon 2024 - Amsterdam Luigi Favaro

In collaboration with B. Dillon, F. Feiden, M. Krämer, T. Modak, T. Plehn, J. Rüschkamp

May 2, 2024

- ► Introduction
- ► Contrastive Learning
- ▶ Event anomalies
- ► Representing dark showers

1 Introduction

- LHC does and will generate large amount of data;
- We are still looking for BSM physics;
- No clear anomalies in the near future ...
 - → keep exploring with direct searches is not feasible;

1 Introduction

- LHC does and will generate large amount of data;
- We are still looking for BSM physics;
- No clear anomalies in the near future ...
 - \longrightarrow keep exploring with direct searches is not feasible;

model agnostic searches

1 Introduction

- LHC does and will generate large amount of data;
- We are still looking for BSM physics;
- No clear anomalies in the near future ...
 - → keep exploring with direct searches is not feasible;

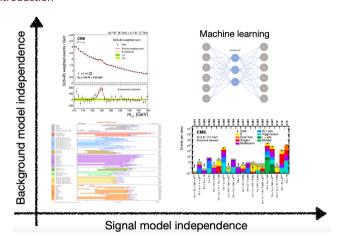
model agnostic searches

no loss in sensitivity

1 Introduction

- LHC does and will generate large amount of data;
- We are still looking for BSM physics;
- No clear anomalies in the near future ...
 - → keep exploring with direct searches is not feasible;

1 Introduction

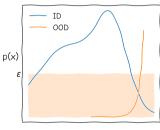


credits to M. Krämer, cf. Karagiorgi, Kasieczka, Kravitz, Nachman, Shih, arXiv:2112.03769 [hep-ph]

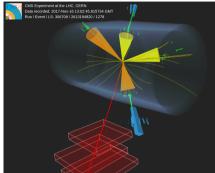
Density estimation

1 Introduction

- Density estimates used as agnostic anomaly scores;
- Only focus on density estimation of background:
 - can be used directly on data;
 - sensitivity requires dealing with large input spaces;
- Improved representation of the data is key...
 - → Physics motivated preprocessing/observables.

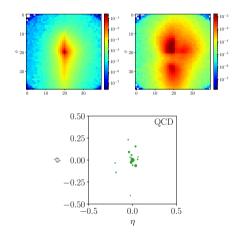


$$OOD = \{x | p(x) < \epsilon\}$$



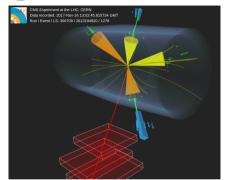
*from CMS Open Data

Reco events

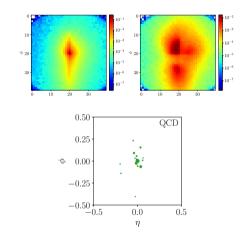


Jet substructure

Datasets 1 Introduction



*from CMS Open Data



Set of objects of variable length with features (p_T, η, ϕ)

Table of Contents 2 Contrastive Learning

- ► Introduction
- ► Contrastive Learning
- ▶ Event anomalies
- ► Representing dark showers

Self-supervision 2 Contrastive Learning

*also discussed in Patrick's talk here

- Preprocessing solves many problems with neural networks;
 - NNs are not invariant to physical symmetries in data;
 - NNs like numbers of O(1);
- Self-supervision: during training we use pseudo-labels, not truth labels;
 - → task used to create new representations/observables;

Self-supervision 2 Contrastive Learning

*also discussed in Patrick's talk here

- Preprocessing solves many problems with neural networks;
 - NNs are not invariant to physical symmetries in data;
 - NNs like numbers of O(1);
- Self-supervision: during training we use pseudo-labels, not truth labels;
 - → task used to create new representations/observables;

Key aspects of representations:

- Invariance to certain transformations of the jet/event
- Discriminative power

In CLR we construct a mapping to a new representation space

CLR training2 Contrastive Learning

*as in JetCLR, arXiv:210804253

- Pseudo-labels are defined from pairs:
 - $\{(x_i, x_i')\}$: positive pair \rightarrow alignment/invariance;
 - $\{(x_i, x_j) \cup (x_i, x_j')\}$: negative pair \rightarrow uniformity/discriminative:
- $f: \mathcal{R} \to \mathcal{Z}$ is a transformer-encoder;
- $s(\cdot, \cdot)$ cosine distance in rep. space.

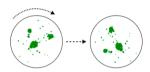
$$\mathcal{L} = -\log \frac{exp(s(z_i, z_i') / \tau)}{\sum \mathcal{I}_{i \neq j}[exp(s(z_i, z_j) / \tau) + exp(s(z_i, z_i') / \tau)]}$$

1

2 Contrastive Learning

Augmentation: any transformation (e.g. rotation) of the original jet

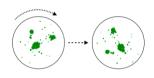
- Example:
 - \longrightarrow detector invariance under rotations;



2 Contrastive Learning

Augmentation: any transformation (e.g. rotation) of the original jet

- Example:
 - → detector invariance under rotations;
- Background data does not known BSM features.



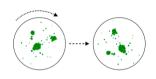
Can we train a transformer-encoder network only on background events?

• Possible, but with no guarantee to learn representations sensitive to new physics;

2 Contrastive Learning

Augmentation: any transformation (e.g. rotation) of the original jet

- Example:
 - → detector invariance under rotations;
- Background data does not known BSM features.



Can we train a transformer-encoder network only on background events?

• Possible, but with no guarantee to learn representations sensitive to new physics;

Introduce general BSM motivated anomalous representations z^*

2 Contrastive Learning

*from "Anomalies, representations, and self-supervision", arXiv:2301.04660

Contrastive Learning for anomaly detection:

- anomalous pairs: $\{(x_i, x_i^*)\}$ where x_i^* comes from a different set of augmentations;
- These are motivated by BSM features, general, and signal agnostic.

$$\mathcal{L}_{\textit{aCLR}} = -\log \frac{exp(s(z_i, z_i') - s(z_i, z_i^*) / \tau)}{\sum \mathcal{I}_{i \neq j}[exp(s(z_i, z_j) / \tau) + exp(s(z_i, z_j') / \tau)]}$$

$$\mathcal{L}_{\textit{aCLR}+} = -\log \exp^{(s(z_i, z_i') - s(z_i, z_i*))/\tau} = \frac{s(z_i, z_i^*) - s(z_i, z_i)}{\tau}$$

- ▶ Introduction
- **▶** Contrastive Learning
- ► Event anomalies
- ► Representing dark showers

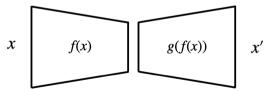
Anomaly scores

3 Event anomalies

- Cut-based OOD downstream task as a benchmark;
- (Normalized)AutoEncoder based anomaly score:

$$E_{\theta} = MSE(x, D(E(x)))$$
 $p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{\Omega};$

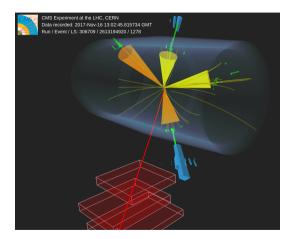
- for more details see arXiv:2206.14225;
- or posters IDs 146,95 for applications within CMS.



The corresponding anomaly score will be (approx) invariant to the augmentations

Reco events

3 Event anomalies



Reco events

3 Event anomalies

Background data:

-
$$W
ightarrow l
u$$
 (59.2%);

-
$$Z \to ll$$
 (6.7%);

-
$$t\bar{t}$$
 production (0.3%);

Benchmark signals:

-
$$A \rightarrow 4l$$
:

-
$$h^0 \rightarrow \tau \tau$$
:

-
$$h^+ \rightarrow \tau \nu$$
;

-
$$LO \rightarrow b\nu$$
:

• Event-level reconstructed objects:

-
$$(p_T, \phi)$$
 of missing transverse energy;

-
$$(p_T, \eta, \phi)$$
 of e, μ , and jets;

Selection cuts:

- one lepton with
$$p_T > 23$$
 GeV;

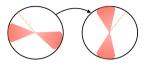
-
$$|\phi| \in [-\pi, \pi]$$
, rescaled in $[-1, 1]$;

-
$$|\eta| < 3, 2.1, 4$$
 for e, μ , jets, rescaled in $(-1, 1)$:

• empty entries are zero-padded.

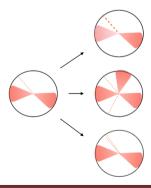
3 Event anomalies

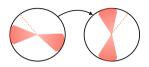
- Azimuthal rotations;
- $\bullet \ (\eta,\phi)$ and energy smearing.



3 Event anomalies

- Azimuthal rotations:
- (η, ϕ) and energy smearing.

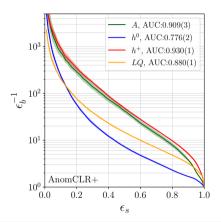


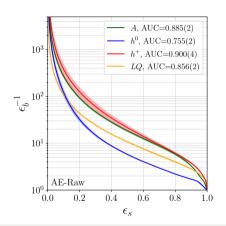


- p_T and MET shifts;
- random multiplicity shifts;
- multiplicity shifts with MET and p_T constant.

Effect of new representation

3 Event anomalies





Better performance on all the BSM signals

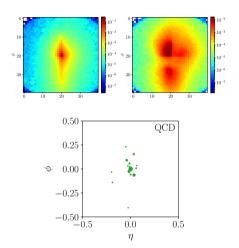
Table of Contents

4 Representing dark showers

- ► Introduction
- ► Contrastive Learning
- **▶** Event anomalies
- ► Representing dark showers

Jet substructure

4 Representing dark showers



Dark showers 4 Representing dark showers

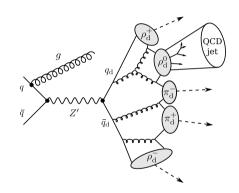
*from "Semi-visible iets, energy-based models, and self-supervision", arXiv:2312.03067

New physics hidden in jet substructure;

Benchmark signal: semi-visible jets

- Z' = 2TeV dark sects mediator;
- q_d dark quarks charged under $SU(3)_d$;
- $m_{q_d} = 500 \text{MeV};$
- $\Lambda = m_{\pi_d} = m_{\rho_d} = 5 \text{GeV};$

QCD-like showers with fraction of invisible particles



*studied in arXiv:2006.08639

Dark showers 4 Representing dark showers

*from "Semi-visible jets, energy-based models, and self-supervision", arXiv:2312.03067

New physics hidden in jet substructure;

Benchmark signal: semi-visible jets

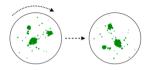
- Jet constituents:
 - (p_T, η, ϕ) of each constituent;
 - $p_T \in [150, 350] \, {
 m GeV}, \, |\eta_j| < 2;$
- anti-kt clustering $\Delta R = 0.8$;
- · empty entries are zero-padded.

 $r_{\rm inv}=0.75, m_{\rm d}=5{\rm GeV} \longrightarrow {\rm referred\ to\ as\ "Aachen"\ model.}$

*studied in arXiv:2006.08639

4 Representing dark showers

rotations in $[0, 2\pi]$:

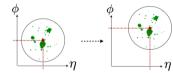


4 Representing dark showers

rotations in $[0, 2\pi]$:

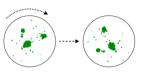


translations in $[\eta, \phi]$:

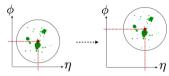


4 Representing dark showers

rotations in $[0, 2\pi]$:



translations in $[\eta, \phi]$:

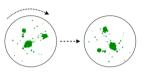


permutation invariance:

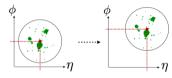
$$f(x) = f(S_n(x))$$

4 Representing dark showers

rotations in $[0, 2\pi]$:



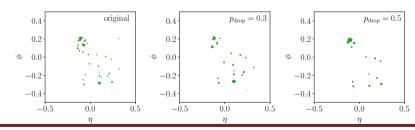
translations in $[\eta, \phi]$:



permutation invariance:

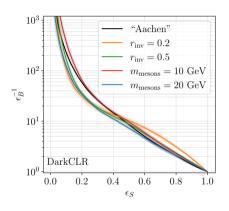
$$f(x) = f(S_n(x))$$

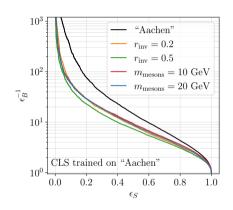
Applying p_{drop} to a QCD jet:



Robustness of darkCLR

4 Representing dark showers





Representations generalize over different pheno parameters

• ML can lead the future of anomaly searches;

- ML can lead the future of anomaly searches;
- We can use CLR to learn powerful representations:
 - approximately invariant under transformations;
 - sensitive to BSM effects;

- ML can lead the future of anomaly searches;
- We can use CLR to learn powerful representations:
 - approximately invariant under transformations;
 - sensitive to BSM effects;
- Two examples of anomaly detection with CLR:
 - Event-level reconstructed objects;
 - Semivisible jets detection;

- ML can lead the future of anomaly searches:
- We can use CLR to learn powerful representations:
 - approximately invariant under transformations:
 - sensitive to BSM effects;
- Two examples of anomaly detection with CLR:
 - Event-level reconstructed objects:
 - Semivisible iets detection:

Outlook:

- Have a more interpretable latent space;
- More detailed study of systematic uncertainties.

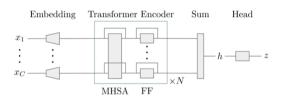
Self-supervision for data-driven anomaly detection at the LHC

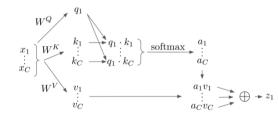
EuCAIFCon 2024 - Amsterdam Thank you for listening!

Any questions?

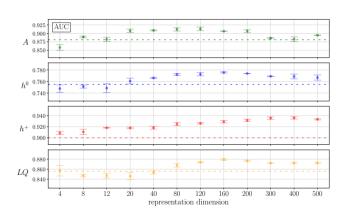
Backup

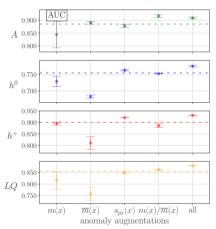
Transformer Encoder 6 Backup





Ablation studies





High-level features

6 Backup

