

Overview : QCD matter in extreme

- Phases of matter : solid, liquid, gas, plasma
- Matter in extreme conditions reveals its constituents : nuclear matter \rightarrow quark matter

To study QCD matter under extreme conditions:

- Nuclear Collisions : heat \& compress matter
- Lattice Field Theory : numerically solve partition function
- Neutron Star : dense matter, astronomy constraints

K. Zhou, L. Wang, L. Pang, S. Shi, PPNP 135, 104084

Challenge in HIC and modern computational strategies

- Uncertainties in HIC modeling
- Multiple parameters entangle with multiple observables
- How to disentangle different factors to reveal fundamental physics from the dynamical environment final state?

Universal approximator
Differentiable programming
Gradient based optimization

Direct inverse mapping? CNN make the road

-

- Conventional obs. hard to distinguish
- Strongly influence from initial fluctuations and other uncertainties
- CNN : 95\% event-by-event accuracy!
- Robust to initial conditions, eta/s

Conclusion : Information of early dynamics can survive to the end of hydrodynamics and encoded within t he final state raw spectra, immune to evolution's uncertainties, with deep CNN we can decode it back.
L. Pang, K. Zhou, N. Su, et.al., Nature Commu. 9 (2018), no.1, 210

- Posterior ~ Likelihood * Prior

- With real experimental data

Test the extracted EoS on different observables (not used in Bayesian analysis)

HO. Potential Reconstruction by Inversing Shroedinger Eq.

Large mass scale : $\quad m_{Q} \gg \Lambda_{Q C D}, T, p$

- Hard Process production in early stage
- 'Calibrated' QCD Force - HQ interaction

Vacuum: NRQCD, Cornell-like $\quad V(r)=-\frac{\alpha}{r}+\sigma r+B$
Medium: Color Screening, Thermal width

Large mass scale :

$$
\hat{H} \psi_{n}=-\frac{\nabla^{2}}{2 m_{\mu}} \psi_{n}+V(r) \psi_{n}=E_{n} \psi_{n}
$$

M. Strickland, et.at., PRC(2015) PRD(2018), PLB(2020)

New IQCD results cannot be explained by
Perturbative HTL-inspired potentials !

How to extract effective potential given limited spectroscopy?

Flow chart for "DNN + Schrödinger Eq."

limited spectrum \{ En \} to continuous interaction $V(r)$?

Learn $V(r)$ from 5 eigenvalues:
$\{\operatorname{En}\}=\{3 / 2,7 / 2,11 / 2,15 / 12,19 / 2\} \mathrm{GeV}$

limited spectrum \{ En \} to continuous interaction $V(r)$?

initial potential

Learn $V(r)$ from 5 eigenvalues:
$\{E n\}=\{3 / 2,7 / 2,11 / 2,15 / 12,19 / 2\} \mathrm{GeV}$

limited spectrum \{En\} to continuous interaction $V(r)$?

-- Yes! But to some range decided by the used states.

Learn $V(r)$ from 5 eigenvalues:
$\{E n\}=\{3 / 2,7 / 2,11 / 2,15 / 12,19 / 2\} \mathrm{GeV}$

Deviation @ given states' wavefunction vanishes

$$
\delta E_{n}=\left\langle\psi_{n}\right| \delta V(r)\left|\psi_{n}\right\rangle
$$

initial potential

Chi2-per-data=16.5/30
S. Shi, K. Zhou, et. al., Phys. Rev. D 105 (2022) 1, 1

The reconstructed T, r dependent potential

From EoS to Stellar Structure (MR)

- Mass ~ 2 solar masses
- Radii ~ 10 km
- Densities 5-8 ρ_{0}

Thin atmosphere: H, He, C....
Outer crust: ions, electrons

- Gravity $\leftarrow \rightarrow$ Pressure

$$
\frac{d P}{d r}=-\frac{G}{r^{2}}\left(\rho+\frac{P}{c^{2}}\right)\left(m+4 \pi r^{3} \frac{P}{c^{2}}\right)\left(1-\frac{2 G m}{c^{2} r}\right)^{-1}
$$

$$
M=m(R)=\int_{0}^{R} 4 \pi r^{2} \rho d r
$$

- Dense matter Equation of State

(b) EoS Training
-TOV-Solver Network
anan •••••••••••••••••
"mene 00000000,0000000
ume

$\mathscr{L}=\chi^{2}=\sum_{i=1}^{N_{\text {osk }}} \frac{\left(M_{i}-M_{\text {obs. } i}\right)^{2}}{\Delta M_{i}^{2}}+\frac{\left(R_{i}-R_{\text {obs. } i}\right)^{2}}{\Delta R_{i}^{2}}$

$$
g_{t}=\frac{\delta \chi^{2}}{\delta \theta_{t}}=\frac{\delta \chi^{2}}{\delta \mathbf{z}} \frac{\delta \mathbf{z}}{\delta x} \frac{\delta x}{\delta \theta_{t}}
$$

Gradients
Loss function
S. Soma, L. Wang, S. Shi, H. Stoecker, K. Zhou, JCAP 98 (2022) 071
S. Soma, L. Wang, S. Shi, H. Stoecker, K. Zhou, Phys. Rev. D 107 (2023)083028

(b) EoS Training

Loss function

$$
g_{t}=\frac{\delta \chi^{2}}{\delta \theta_{t}}=\frac{\delta \chi^{2}}{\delta \mathbf{z}} \frac{\delta \mathbf{z}}{\delta x} \frac{\delta x}{\delta=\left(M_{i}, R_{i}\right), x=P_{i}\left(\rho_{i}\right)}
$$

Gradients

S. Soma, L. Wang, S. Shi, H. Stoecker, K. Zhou, JCAP 98 (2022) 071
S. Soma, L. Wang, S. Shi, H. Stoecker, K. Zhou, Phys. Rev. D 107 (2023)083028
${ }^{a}$ Frankfurt Institute for Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany
${ }^{\mathrm{b}}$ School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
${ }^{\mathrm{c}}$ Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal
University, Wuhan, 430079, China
${ }^{\mathrm{d}}$ Department of Physics, Tsinghua University, Beijing 100084, China
${ }^{e}$ Center for Nuclear Physics, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA

ARTICLE INFO

Keywords:

Machine learning
Heavy ion collisions
Lattice QCD
Neutron star
Inverse problem

Thanks!

A B S TRACT

In recent years, machine learning has emerged as a powerful computational tool and novel problem-solving perspective for physics, offering new avenues for studying strongly interacting QCD matter properties under extreme conditions. This review article aims to provide an overview of the current state of this intersection of fields, focusing on the application of machine learning to theoretical studies in high energy nuclear physics. It covers diverse aspects, including heavy ion collisions, lattice field theory, and neutron stars, and discuss how machine learning can be used to explore and facilitate the physics goals of understanding QCD matter. The review also provides a commonality overview from a methodology perspective, from data-driven perspective to physics-driven perspective. We conclude by discussing the challenges and future prospects of machine learning applications in high energy nuclear physics, also underscoring the importance of incorporating physics priors into the purely data-driven learning toolbox. This review highlights the critical role of machine learning as a valuable computational paradigm for advancing physics exploration in high energy nuclear physics.

