

REAL-TIME GRAVITATIONAL WAVE DATA ANALYSIS WITH MACHINE LEARNING

Katya Govorkova katyag@mit.edu, Ryan Raikman, Eric A Moreno, Ethan J Marx, Alec Gunny, William Benoit, Deep Chatterjee, Rafia Omer, Muhammed Saleem, Dylan S Rankin, Michael W Coughlin, Philip C Harris, Erik Katsavounidis

GRAVITATIONAL WAVES AND THEIR DETECTION

ACCELERATING MASSES PRODUCE
DEFORMATIONS IN SPACE TIME THAT
WE CAN DETECT VIA INTERFEROMETRY

THE LIGO-VIRGO-KAGRA COLLABORATION

A SIGNAL WILL APPEAR IN AT LEAST TWO INTERFEROMETERS, WITH THE TIME DELAY BECAUSE OF THE DISTANCE BETWEEN THE DETECTORS

CLEANED

DATA

16KHZ

~ 100K AU) CHANNELS

DETECTOR CHARACTERISATION

USE INFO FROM WITNESS
SENSORS TO PERFORM
DATA DE-NOISING

CURRENT WORKFLOW USES CPU

DATA GRID WITH RULE BASED ALGORITHMS

CHALLENGE IS TO RUN THIS IN REAL-TIME

EVENT DETECTION

EVENT

WHY ML?

- INCREASING DETECTOR SENSITIVITY → MORE TEMPLATES FOR MATCHED FILTERING
- MAKES ML ADVANTAGEOUS IN TERMS OF COMPUTATIONAL COST AND LATENCY (AND POSSIBLY SENSITIVITY) USEFUL FOR MULTI-MESSENGER ASTROPHYSICS EFFORTS

NEUTRINOS

X-RAYS/GAMMA-RAYS

VISIBLE/INFRARED LIGHT

RADIO WAVES

- INCREASING DETECTOR SENSITIVITY → MORE TEMPLATES FOR MATCHED FILTERING
- MAKES ML ADVANTAGEOUS IN TERMS OF COMPUTATIONAL COST AND LATENCY (AND POSSIBLY SENSITIVITY) USEFUL FOR MULTI-MESSENGER ASTROPHYSICS EFFORTS

NOISE SUBTRACTION AND DOWNSTREAM ALGORITHMS NEED TO WORK
IN REAL-TIME TO CAPTURE AS MUCH DATA AS POSSIBLE AND SATISFY

- HIGH THROUGHPUT
- LOW LATENCY
- ROBUST TO CHANGING DATA DISTRIBUTION

NEUTRINOS

X-RAYS/GAMMA-RAYS

VISIBLE/INFRARED LIGHT

RADIO WAVES

FUTURE ML-BASED WORKFLOW

DATA 16kH7

~100K AUXILIARY CHANNELS

DETECTOR CHARACTERISATION

DEEPCLEAN

NN BASED AE

NOISE SUBTRACTION

CLEANED DATA

GW STRAIN CONTENT

THE OUTPUT RECONSTRUCTED FROM AN INTERFEROMETER CONTAINS

$$h(t) = s(t) + n(t)$$

POSSIBLE GW SIGNAL

DETECTOR NOISE

THE OUTPUT RECONSTRUCTED FROM AN INTERFEROMETER CONTAINS

$$h(t) = s(t) + n(t)$$

Possible GW signal

DETECTOR NOISE

$$n(t) = n_{nw}(t) + n_{w}(t)$$

NON-REMOVABLE (FUNDAMENTAL NOISE)
EG: PHOTON SHOT NOISE, THERMAL NOISE

CAN BE REDUCED ONLY WITH UPGRADED DESIGN AND TECHNOLOGY

Source of noise witnessed by dedicated system monitors (witness sensors)

ENVIRONMENTAL CONTAMINATION OR TECHNICAL NOISE EG: NOISE ARISING FROM THE CONTROL OF SUSPENDED OPTICS

DEEPCLEAN DENOISING

- CNN-based autoencoder to predict the noise using witness channels
- ACTIVE-LEARNING: NETWORK IS FINE-TUNED AT FIXED INTERVALS AND THE NEW MODEL IS
 HOSTED ALONGSIDE STABLE MODEL ON INFERENCE SERVICE
- DEEPCLEAN IS CAPABLE OF DENOISING THE DATA AT ~ 1 S LATENCY A PROMISING PROSPECT FOR ELECTROMAGNETIC FOLLOW-UP OF GRAVITATIONAL WAVE OBSERVATIONS

FUTURE ML-BASED WORKFLOW

16 KH7

~ 100K AUXILIARY CHANNELS

DETECTOR CHARACTERISATION

DEEPCLEAN

NN BASED AE

NOISE SUBTRACTION

CLEANED DATA

NN-BASED ALGOS FOR EVENT DETECTION

A-FRAME

- DETECTING COMPACT BINARY COALESCENCES IN GRAVITATIONAL WAVE STRAIN TIMESERIES DATA USING NEURAL NETWORKS
- RESNET ARCHITECTURE, MAPS FROM DETECTOR STRAIN FROM TWO INTERFEROMETERS TO A SCALAR NEURAL-NETWORK OUTPUT
- 2-10 TIMES FASTER THAN MATCHED FILTERING CBC PIPELINE

COMPETITIVE PERFORMANCE ON HIGHER-MASS CATALOG DISTRIBUTIONS

WORK REMAINS TO BE DONE FOR LOWER MASSES — ALTERNATIVE ARCHITECTURES OR SMARTER

TRAINING TECHNIQUES

FUTURE ML-BASED WORKFLOW

NN-BASED ALGOS FOR EVENT DETECTION

DETECTOR **CHARACTERISATION**

CLEANED DATA

~100K AUXILIARY

DEEPCLEAN NN BASED AE **NOISE SUBTRACTION**

KNOWN "UNKNOWNS" POSSIBLE SIGNAL SOURCES THAT ARE POORLY MODELLED AND THEREFORE CANNOT BE EASILY DETECTED USING THE MATCH FILTERING PIPELINE

CORE-COLLAPSE
SUPERNOVA (CCSN)

NEUTRON STAR GLITCHES

GWAK ANOMALOUS GRAVITATIONAL WAVE SOURCES

UNKNOWN "UNKNOWNS" NEW, UNEXPECTED GW SOURCES

WE REFER TO THEM AS ANOMALOUS AND AIM TO DEVELOP A SEMI-SUPERVISED APPROACH WHICH WOULD LET US TO DISCOVER ANOMALOUS SIGNALS WITHOUT EXPLICIT MODELLING

GWAK: GW ANOMALOUS KNOWLEDGE VANILLA ANOMALY DETECTION

THE ALGORITHM IS INSPIRED BY QUAK ARXIV2011.03550 FROM LHC HEP

USE THE DISTANCE BETWEEN THE INPUT AND OUTPUT AS A METRIC FOR ANOMALY DETECTION

INCLUDING MORE AXES, BOTH SIGNAL AND BACKGROUND, ALLOWS TO MORE EFFICIENTLY SELECT A SIGNAL-LIKE ANOMALIES

INCLUDING MORE AXES, BOTH SIGNAL AND BACKGROUND, ALLOWS TO MORE EFFICIENTLY SELECT A SIGNAL-LIKE ANOMALIES

2D GWAK Space BBH-like Signal Background Region CCSN **Background**

STRAIN, GWAK METRIC RESPONSE AND FINAL METRIC RESPONSE FOR SUPERNOVA SIMULATED SIGNAL

THE EVALUATION OF GWAK AXES AND PEARSON CORRELATION WITH TIME AND ON THE TOP RIGHT TOTAL METRIC VALUE AND FAR ARE SHOWN AS AN EXAMPLE OF THE ALGORITHM'S "REACTION" TO AN UNSEEN SIGNAL

STRAIN, GWAK METRIC RESPONSE AND FINAL METRIC RESPONSE FOR SUPERNOVA SIMULATED SIGNAL

THE EVALUATION OF GWAK AXES AND PEARSON CORRELATION WITH TIME AND ON THE TOP RIGHT TOTAL METRIC VALUE AND FAR ARE SHOWN AS AN EXAMPLE OF THE ALGORITHM'S "REACTION" TO AN UNSEEN SIGNAL

Welcome to the Collection of Anomalies

Detected by the SWAY pipeline

GWAK DETECTION

CLEANED

DATA

DAIA 16kH7

~100K AUXILIARY CHANNELS

DETECTOR CHARACTERISATION

DEEPCLEAN

NN BASED AE

NOISE SUBTRACTION

NN-BASED ALGOS FOR EVENT DETECTION

EVENT

AMPLFI: ACCELERATED MULTI-MESSENGER PARAMETER ESTIMATION USING LIKELIHOOD FREE INFERENCE NEUR

NEURIPS ML4PS 2023 69 PDF

PERFORM FAST PARAMETER ESTIMATION USING SIMULATION-BASED INFERENCE

- SIMULATE DATA FROM THE LIKELIHOOD, TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR
- USE SELF-SUPERVISION TO MARGINALIZE SYMMETRIES

AMPLFI: ACCELERATED MULTI-MESSENGER PARAMETER ESTIMATION USING LIKELIHOOD FREE INFERENCE

NEURIPS ML4PS 2023 69 PDF

PERFORM FAST PARAMETER ESTIMATION USING SIMULATION-BASED INFERENCE

- SIMULATE DATA FROM THE LIKELIHOOD, TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR
- USE SELF-SUPERVISION TO MARGINALIZE OVER COALESCENCE TIME
- NORMALIZING FLOWS (INVERTIBLE TRANSFORMS MAP SIMPLE DISTRIBUTION TO COMPLEX DISTRIBUTION) EMBED BROAD KNOWLEDGE OF WAVEFORMS

AMPLFI: ACCELERATED MULTI-MESSENGER PARAMETER ESTIMATION USING LIKELIHOOD FREE INFERENCE NEUR

NEURIPS ML4PS 2023 69 PDF

PERFORM FAST PARAMETER ESTIMATION USING SIMULATION-BASED INFERENCE

- SIMULATE DATA FROM THE LIKELIHOOD, TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR
- Use self-supervision to marginalize over coalescence time
- NORMALIZING FLOWS (INVERTIBLE TRANSFORMS MAP SIMPLE DISTRIBUTION TO COMPLEX DISTRIBUTION) EMBED BROAD KNOWLEDGE OF WAVEFORMS

• PE DONE IN SECONDS!

SCIENTIST USES SIMULATIONS TO GENERATE DATA, PRIORS TO

MODELS ARE DISTRIBUTED AND VERSIONED IN CENTRALIZED REPOSITORIES

INFERENCE APPLICATIONS HOST MODELS, INTERACTED WITH VIA APIS

DEDICATED TOOLS MAKE ITERATION/EXPLORATION **FRICTIONLESS**

HETEROGENEOUS COMPUTING SCALABILITY

ML4GW & HERMES

ML4GW — TORCH UTILITIES FOR TRAINING NEURAL NETWORKS IN GRAVITATIONAL WAVE PHYSICS APPLICATIONS

FAST DATA LOADING

GPU-FRIENDLY IMPLEMENTATIONS OF COMMON ANALYSIS OPERATIONS

ALLOWING FOR MORE
ROBUST USE OF SIMULATIONS

HERMES — A SET OF APIS FOR ASSISTING IN THE ACCELERATION, EXPORT, SERVING, AND REQUESTING OF MODELS USING TRITON INFERENCE SERVER

DISTRIBUTE MODELS
USING CENTRALIZED
REPOS

PERFORM INFERENCE WITH AN OFF-THE-SHELF APPLICATION - NVIDIA TRITON

USERS INTERACT VIA
LIGHTWEIGHT CLIENT APIS,
ABSTRACTING
IMPLEMENTATION DETAILS

— Using those tools, we were able to run the algorithms on 64 GPU server seamlessly!

SMOOTH INTEGRATION INTO ONLINE!

G1783271

Authenticated as: Katya Govorkova

G1783271 Neighbors

Log Messages

Full Event Log

Basic Event Information UID G1783271 Labels CBC Group Pipeline aframe Search AllSky ['H1', 'L1'] Instruments Event Time ▼ 139 FAR (Hz) 3.087e-08 FAR (yr⁻¹) 1 per 1.0264 years Latency (s) 3.524 Links Data UTC Submitted ▼ 2024

SMOOTH INTEGRATION INTO ONLINE!

~√ GraceDB (USER TESTING) Public Alerts ▼ Latest Search Notifications Pipelines Documentation Logout

Authenticated as: Katya Govorkova

TO ENABLE A COMPLETE AI PIPELINE, WE HAVE DEVELOPED GITHUB.COM/ML4GW
— A SET OF COMPREHENSIVE TOOLS FOR ML PIPELINE IN GW PHYSICS
WHICH ALLOWS TO PERFORM

- Modelled and unmodelled searches
- Run efficiently Offline
- Run Online with low latency
- SEAMLESS DEVELOPMENT AND FAST DEPLOYMENT OF NN-BASED ALGORITHMS
- SMALL COMPUTATION FOOTPRINT AND OPTIMISED
 HETEROGENEITY

— LOOKING TO INVITE MANY OTHERS TO BUILD ON OUR WORK!

WE RUN OPEN WEEKLY MEETINGS AND EVERYONE IS WELCOME TO JOIN

BACKUP

CONTINUOUS TIME SERIES (1Hz, 128Hz ... 16KHz)

GRAVITATIONAL WAVE CHANNEL ~ 20GB/DAY (PER INSTRUMENT)

PHYSICAL ENVIRONMENT MONITORS
(SEISMOMETERS, ACCELEROMETERS,
MAGNETOMETERS, MICROPHONES ETC)

INTERNAL ENGINEERING MONITORS
(SENSING, HOUSEKEEPING, STATUS ETC)

TOGETHER WITH VARIOUS INTERMEDIATE DATA PRODUCTS > 2TB/DAY (PER INSTRUMENT)

COMPETITIVE PERFORMANCE ON HIGHER-MASS CATALOG DISTRIBUTIONS

WORK REMAINS TO BE DONE FOR LOWER MASSES — ALTERNATIVE ARCHITECTURES OR SMARTER

TRAINING TECHNIQUES

 $V(\mathcal{F}) = \int d\mathbf{x} d\theta \ \epsilon(\mathcal{F}; \mathbf{x}, \theta) \phi(\mathbf{x}, \theta)$

WE CHOOSE LSTM ARCHITECTURE TO PROPERLY HANDLE SEQUENTIAL DATA WITH TEMPORAL DEPENDENCIES

WE CHOOSE DENSE ARCHITECTURE FOR BACKGROUNDS TO PROPERLY HANDLE SEQUENTIAL DATA WITHOUT TEMPORAL DEPENDENCIES

Sampling parameters and priors for BBH (top) and sine-Gaussian (bottom) injections.

	Parameter	Prior	Limits	Units
BBH	m_1	-	(5, 100)	M_{\odot}
	m_2	_	(5, 100)	M_{\odot}
	Mass ratio q	Uniform	(0.125, 1)	-
	Chirp mass M_c	Uniform	(25, 100)	M_{\odot}
	Tilts $\theta_{1,2}$	Sine	$(0,\pi)$	rad.
	Phase ϕ	Uniform	$(0,2\pi)$	rad.
	Right Ascension	Uniform	$(0,2\pi)$	rad.
	Declination δ	Cosine	$(-\pi/2,\pi/2)$	rad.
sine-Gaussian	Q	Uniform	(25, 75)	-
	Frequency	Uniform	(64, 512) and $(512, 1024)$	${ m Hz}$
	Phase ϕ	Uniform	$(0,2\pi)$	rad.
	Eccentricity	Uniform	(0, 0.01)	-
	Declination δ	Cosine	$(-\pi/2,\pi/2)$	rad.
	Right Ascension	Uniform	$(0,2\pi)$	rad.
	Ψ	Uniform	$(0,2\pi)$	rad.

EXAMPLE OF GWAK CLASSES: GLITCH AND BACKGROUND STRAINS THE LIGHT BLUE SHADING HIGHLIGHTS AN EXAMPLE REGION THAT IS PASSED AS INPUT TO THE AUTOENCODERS FOR TRAINING

ARXIV2309.1153

EXAMPLE OF SIGNAL-LIKE CLASSES: BBH AND SINE-GAUSSIAN STRAINS FROM LIVINGSTON AND HANFORD
THE LIGHT BLUE SHADING HIGHLIGHTS AN EXAMPLE
REGION THAT IS PASSED AS INPUT TO THE
AUTOENCODERS FOR TRAINING

EXAMPLE OF SIGNAL-LIKE CLASSES: SUPERNOVA AND WHITE NOISE BURST STRAINS FROM LIVINGSTON AND HANFORD

THOSE ANOMALIES ARE NOT USED TO CREATE THE GWAK

EXAMPLE OF RECREATION ON INJECTED BBH SIGNAL, WITH THE NOISE-LESS TEMPLATE SHOWN AS WELL THE RECREATION OF THE BBH AUTOENCODER FOLLOWS CLOSELY THE ORIGINAL SIGNAL INJECTION WHILE BACKGROUND, GUTCHES, SG 64-512 Hz and SG 512-1024 Hz fail to reconstruct the injected BBH signal

THE FINAL METRIC AS A FUNCTION OF SNR FOR GWAK AXES TRAINING SIGNALS, BBH, SG 64-512 Hz, SG 512-1024 Hz and for potential anomalies, WNB 40-400 Hz, WNB 400-1000 Hz, and Supernova

