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ACCELERATING MASSES PRODUCE ;
DEFORMATIONS IN SPACE TIME THAT Ei‘@
WE CAN DETECT VIA '




WILL APPEAR IN AT LEAST TWO , WITH THE TIME DELAY BECAUSE OF THE
DISTANCE BETWEEN THE DETECTORS
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EVENT DETECTION

Signal-to-noise

c H A R A c T E R I S AT I 0 N Data from the LIGO Hanford Observatory (whitened and bandpassed)
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CURRENT WORKFLOW USES CPU
DATA GRID WITH RULE BASED ALGORITHMS
CHALLENGE IS TO RUN THIS IN REAL-TIME



* INCREASING = FOR MATCHED
FILTERING
o MAKES IN TERMS OF AND NEUTRINOS

(AND POSSIBLY ) — USEFUL FOR MuLTI-
MESSENGER ASTROPHYSICS EFFORTS

X-RAYS/GAMMA=-RAYS

VISIBLE/INFRARED LIGHT

RADIO WAVES



* INCREASING = FOR MATCHED
FILTERING
o MAKES IN TERMS OF AND NEUTRINOS

(AND POSSIBLY ) — USEFUL FOR MuLTI-
MESSENGER ASTROPHYSICS EFFORTS

X-RAYS/GAMMA=-RAYS

AND NEED TO WORK
TO CAPTURE AS MUCH DATA AS POSSIBLE AND SATISFY VISIBLE/INFRARED LIGHT
e HIGH THROUGHPUT
 Low LATENCY
e ROBUST TO CHANGING DATA DISTRIBUTION

RADIO WAVES



DETECTOR
CHARACTERISATION

CLEANED

DEEPCLEAN
NN BASED AE
NOISE SUBTRACTION

~100K AUXILIARY

CHANNELS



THE OUTPUT RECONSTRUCTED FROM AN INTERFEROMETER CONTAINS

h(t) = s(t) + n(r)

P0oSSIBLE GW SIGNAL




THE OUTPUT RECONSTRUCTED FROM AN INTERFEROMETER CONTAINS

h(t) = s(t) + n(r)

PoSSIBLE GW SIGNAL ’, DETECTOR NOISE

n(t) =n, () + n, ()

SOURCE OF NOISE WITNESSED BY DEDICATED

NON-REMOVABLE (FUNDAMENTAL NOISE)
SYSTEM MONITORS (WITNESS SENSORS)

EG: PHOTON SHOT NOISE, THERMAL NOISE

ENVIRONMENTAL CONTAMINATION OR TECHNICAL
NOISE EG: NOISE ARISING FROM THE CONTROL
OF SUSPENDED OPTICS

CAN BE REDUCED ONLY WITH UPGRADED DESIGN
AND TECHNOLOGY




AUTOENCODER TO PREDICT THE NOISE USING

NETWORK IS FINE-TUNED AT FIXED INTERVALS AND THE NEW MODEL IS
HOSTED ALONGSIDE STABLE MODEL ON INFERENCE SERVICE

IS CAPABLE OF DENOISING THE DATA AT ~ 1 S LATENCY - A PROMISING PROSPECT
FOR ELECTROMAGNETIC FOLLOW-UP OF ,6RAVI TIONAL WAVE OBSERVATIONS

21 x 4096 8 x 4096 8x4096 21 x4096 1 x 4096

16 x 2048 16 x 2048

l “N 32“““1‘024 “““‘ it ““““32 “(““ 024“‘“ l
Latent vector:

64 high-level features




NN-BASED ALGOS FOR EVENT DETECTION

DETECTOR

CHARACTERISATION

DEEPCLEAN
NN BASED AE
NOISE SUBTRACTION

~100K AUXILIARY

CHANNELS
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ARXIv2403.18661

- IN GRAVITATIONAL WAVE STRAIN TIMESERIES DATA
USING NEURAL NETWORKS

~ ARCHITECTURE, MAPS FROM DETECTOR STRAIN FROM TWO INTERFEROMETERS TO A
SCALAR NEURAL-NETWORK OUTPUT

e 2-10 TIMES FASTER THAN MATCHED FILTERING CBC PIPELINE

Input Kernel
~-a— NN outputs
-~ = Average of last 1s

-0.5 0

Time from trigger [s]



https://arxiv.org/abs/2403.18661v1

ARXIV2403.18661

ON CATALOG DISTRIBUTIONS

FOR — ALTERNATIVE ARCHITECTURES OR SMARTER
TRAINING TECHNIQUES

mi = 39 M@,m2:35 M@
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https://arxiv.org/abs/2403.18661v1

NN-BASED ALGOS FOR EVENT DETECTION

DETECTOR
CHARACTERISATION

DEEPCLEAN
NN BASED AE
NOISE SUBTRACTION

~100K AUXILIARY

CHANNELS



KNOWN “UNKNOWNS” THAT ARE POORLY MODELLED AND THEREFORE
CANNOT BE EASILY DETECTED USING THE MATCH FILTERING PIPELINE

CORE-COLLAPSE
SUPERNOVA (CCSN)

NEUTRON STAR GLITCHES
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WE REFER TO THEM AS
WOULD LET US TO

AND AIM TO DEVELOP A SEMI-SUPERVISED APPROACH WHICH
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K.GOVORKOVA ET AL MLST
10.1088/2632-2153/A03A31

THE ALGORITHM 1S INSPIRED BY QUAK ARXi1v2011.03550 FrRoM LHC HEP
USE THE AS A METRIC FOR

1D AD Space

Background Selection Selection
Region Region 1 Region 2



https://arxiv.org/abs/2011.03550
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
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, BOTH SIGNAL AND BACKGROUND, ALLOWS TO

2D GWAK Space

Background

K.GOVORKOVA ET AL MLST
10.1088/2632-2153/Ap3A31

EFFICIENTLY SELECT A
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https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31

K.GOVORKOVA ET AL MLST
10.1088/2632-2153/Ap3A31

, BOTH SIGNAL AND BACKGROUND, ALLOWS TO EFFICIENTLY SELECT A
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https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31

. AND FINAL :
METRIC RESPONSE FOR SIMULATED :
SIGNAL -
THE EVALUATION OF AND TN

el

WITH TIME AND ON THE TOP RIGHT
ARE SHOWN AS AN

EXAMPLE OF THE ALGORITHM'S “"REACTION " TO AN
UNSEEN SIGNAL

Contribution

K.GOVORKOVA ET AL MLST
10.1088/2632-2153/A03A31

supernova strain, SNR = 28.0
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https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31

K.GOVORKOVA ET AL MLST
10.1088/2632-2153/A03A31

supernova strain, SNR = 28.0

. AND FINAL :
METRIC RESPONSE FOR SIMULATED :
SIGNAL &
q', : ’,'? T YT e waw w I
THE EVALUATION OF AND TR S Time (ms)
WITH TIME AND ON THE TOP RIGHT sl

ARE SHOWN AS AN
EXAMPLE OF THE ALGORITHM'S “"REACTION " TO AN
UNSEEN SIGNAL

>
©
o
=
©
>

-50
2000 2100 2200 2300 2400 2500

Time (ms)

2600 2700 2800 2900

21


https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31

Welcome to the
Collection of Anomalies
Detected by the pipeline

O3a analysis

O3b analysis

Burst O3a training

Burst O3b training

1/month

X1/10 years
=

1/100 years

Apr 2019

May 2019

03a GWAK Detections

Jun 2019

Jul 2019 Aug 2019

Date

Sep 2019

Oct 2019
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gps time: 1246485544 + 1665.308 Hanford Q-Transform
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NN-BASED ALGOS FOR EVENT DETECTION

DETECTOR
CHARACTERISATION

CLEANED

DEEPCLEAN - ,m NF FOR EVENT
_CHARACTERISATION
NN BASED AE ,A .

NOISE SUBTRACTION

~100K AUXILIARY

CHANNELS
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NEurips MLAPS 2023 69 PDF

PERFORM FAST PARAMETER ESTIMATION USING SIMULATION-BASED INFERENCE

- FROM THE LIKELIHOOD, TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR
o USE TO MARGINALIZE SYMMETRIES

25


https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_69.pdf

NEURIPS ML4PS 2023 69 PDF

PERFORM USING

. FROM THE LIKELIHOOD, TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR
o USE TO MARGINALIZE OVER COALESCENCE TIME

. (INVERTIBLE TRANSFORMS MAP SIMPLE DISTRIBUTION TO COMPLEX

DISTRIBUTION) EMBED BROAD KNOWLEDGE OF WAVEFORMS

f1(zo) fz Zi—1) fir1(zs)
‘ OB R O8

JA MA

i~ pz(zz) zg ~ pk(z
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https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_69.pdf

NEURIPS ML4PS 2023 69 PDF

PERFORM USING

- FROM THE LIKELIHOOD, TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR
o USE TO MARGINALIZE OVER COALESCENCE TIME

< (INVERTIBLE TRANSFORMS MAP SIMPLE DISTRIBUTION TO COMPLEX

DISTRIBUTION) EMBED BROAD KNOWLEDGE OF WAVEFORMS

f1(zo) fz (zi—1) fiy1(z:)
' @ @+

i~ pz(zz) zg ~ pk(z
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https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_69.pdf

SCIENTIST USES SIMULATIONS TO
GENERATE DATA, PRIORS TO
REGULARIZE TRAINING

HETEROGENEOUS COMPUTING
SCALABILITY

MODELS ARE DISTRIBUTED
AND VERSIONED IN
CENTRALIZED REPOSITORIES

|NFERENCE

APPLICATIONS HOST

MODELS, INTERACTED
WITH VIA APIS

DEDICATED TOOLS MAKE

ITERATION/EXPLORATION
FRICTIONLESS

28



— TORCH UTILITIES FOR TRAINING NEURAL NETWORKS IN GRAVITATIONAL WAVE PHYSICS
APPLICATIONS

GPU-FRIENDLY IMPLEMENTATIONS OF ALLOWING FOR MORE

FAST DATA LOADING

COMMON ANALYSIS OPERATIONS ROBUST USE OF SIMULATIONS

— A SET OF APIs FoR ASSISTIN' TH 'ELERATIUN. EXPORT, SERVING, AND

USERS INTERACT VIA

PERFORM INFERENCE WITH AN
?,Ls.:qzligi:&?zns OFF-THE-SHELF APPLICATION UEHETBIEAT CELT LA
ABSTRACTING
REPOS NVIDIA TRITON

IMPLEMENTATION DETAILS
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https://github.com/ML4GW/ml4gw
https://github.com/ML4GW/hermes

‘-wvﬁ GraceDB Public Alerts ~ Latest Search Notifications Pipelines Documentation Logout

Authenticated as: Katya Govorkova

61783271 G1/832/1

Neighbors

Log Messages
Full Event Log Basic Event Information

uiD G1783271

Labels

H1 = Raw output Group CBC

L1 = Integrated output

Search AllSky

Instruments ['H1','L1"

Event Time ~ 139-

FAR (Hz) 3.087e-08

Whitened strain
Detection statistic

FAR (yr'l) 1 per 1.0264 years

7 8 Latency (s) 3.524
GPS time +1.39603681 x 10?

Links Data

Submitted ~ 2024- uTC




‘-w'dﬁ GraceDB Public Alerts ~ Latest Search Notifications Pipelines Documentation Logout

Authenticated as: Katya Govorkova

Sky Localization Parameter Estimation

Log |
Log Image 09 ‘mage
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luminosity-distance

chirp-mass mass-ratio luminosity-distance

Corner plot
Submitted by William Benoit on April

Mollview projection
Submitted by William Benoit on Apri —




NATURE ASTRONOMY D01.0RG/10.1038/541550-022-01651-w

T0 ENABLE , WE HAVE DEVELOPED
— A SET OF COMPREHENSIVE TOOLS FOR ML PIPELINE IN GW PHYSICS
WHICH ALLOWS TO PERFORM

PPPPPP

MODELLED AND UNMODELLED SEARCHES
RUN EFFICIENTLY OFFLINE '
RUN ONLINE WITH LOW LATENCY
SEAMLESS DEVELOPMENT AND FAST DEPLO
OF NN-BASED ALGORITHMS

SMALL COMPUTATION FOOTPRINT AND OPTIMISED
HETEROGENEITY

Tools to make training and deploying neural networks in service of gravitational wave physics simple and accessibletoall ~~ Ppeople

We are grateful for the support of the U.S. National Science Foundation (NSF) Harnessing the Data Revolution (HDR) Institute for

eeeeeeeeeeeeeeeeeeeeeeeeeeee
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Pinned

Most used topics


https://github.com/ML4GW
https://www.nature.com/articles/s41550-022-01651-w.epdf?sharing_token=w7IQ4Wf8nvW3tQc8s-qCcdRgN0jAjWel9jnR3ZoTv0Ou2LS_lA4KwSLE_33b_sBTHnSVQTA9LeyaKo6SxCjSSOR7H46-rjWWUNfqzxl-7U2_nnNQHeLF6ocEpsYKVhOhHDhgyU4lWetHwN1UV2i3j_VZxTDYku9C1ppZJXhFeL8=

BACKUP




~20GB/DAY (PER INSTRUMENT)

(SEISMOMETERS, ACCELEROMETERS,
MAGNETOMETERS, MICROPHONES ETC)

(SENSING, HOUSEKEEPING, STATUS ETC)
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ZENODO
COMPETITIVE PERFORMANCE ON HIGHER-MASS CATALOG DISTRIBUTIONS
WORK REMAINS TO BE DONE FOR LOWER MASSES — ALTERNATIVE ARCHITECTURES OR SMARTER
TRAINING TECHNIQUES

V(F) = /dx df e(F;x,0)p(x,0)

m1=35M@,m2=35M@ m1=35Mg,m2:2OMQ

—— MBTA
PyCBC-BBH
PyCBC-Broad

Sensitive volume (Gpc?)
— — — —
() N} = (@]

0

(=]

" 4.0

Sensitive volume (Gpc?)

=N

10! 2 10!

False alarm rate (years™!) False alarm rate (years™!)



https://zenodo.org/records/7890437

WE CHOOSE LSTM ARCHITECTURE TO PROPERLY HANDLE SEQUENTIAL DATA WITH TEMPORAL
DEPENDENCIES

H1 LSTM Preprocessor

L1 LSTM Preprocessor
——

Layer 2 Layer 1

Layer 1 Layer 2
LSTM(4) LSTM(4) Layer 3 Layer 3 LSTM(4) LSTM(4)

tanh(Linear) tanh(Linear)

L1 Input
200 X 1

daysawi)
daysawi]

MAE Loss MAE Loss
Time Domain = / Time Domain
(Training) ] (Training)

tanh(Linear) 200 X 1

L1 Output
200 X 1

L1~ [~
B -
. Layer 9 Linear Layer 9 Linear I |

7 ~_
i Layers 4-8 H1 Output



https://arxiv.org/abs/2309.11537

WE CHOOSE DENSE ARCHITECTURE FOR BACKGROUNDS TO PROPERLY HANDLE SEQUENTIAL DATA
WITHOUT TEMPORAL DEPENDENCIES

Layer 1 Layer 6
ReLU(Linear) Linear

Layer 2
ReLU(Linear)

3

Layer 3,4
ReLU(Linear)

N
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41
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https://arxiv.org/abs/2309.11537

SAMPLING PARAMETERS AND PRIORS FOR BBH (TOP) AND SINE-GAUSSIAN (BOTTOM) INJECTIONS.

Limits

Mass ratio g Uniform
Chirp mass M, | Uniform
Tilts 91’2 Sine

Phase ¢ Uniform
Right Ascension | Uniform

Declination o Cosine

Q Uniform (25,75)
Frequency Uniform (64,512) and (512,1024)
Phase ¢ Uniform (0, 2m)
Eccentricity Uniform (0,0.01)
Declination § Cosine (—m/2,7/2)
Right Ascension | Uniform (0, 2m)

U Uniform (0, 2m)

sine-Gaussian



https://arxiv.org/abs/2309.11537

EXAMPLE OF GWAK CLASSES: GLITCH AND BACKGROUND STRAINS
THE LIGHT BLUE SHADING HIGHLIGHTS AN EXAMPLE REGION THAT IS PASSED AS INPUT TO THE

AUTOENCODERS FOR TRAINING
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https://arxiv.org/abs/2309.11537

SG 64-512Hz, SNR: 33.0
SG 512-1024Hz, SNR: 30.0

BBH, SNR: 43.0
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https://arxiv.org/abs/2309.11537

EXAMPLE OF SIGNAL-LIKE CLASSES: SUPERNOVA AND
WHITE NOISE BURST STRAINS FROM AND

THOSE ANOMALIES ARE NOT USED TO CREATE THE
GWAK
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https://arxiv.org/abs/2309.11537

EXAMPLE OF RECREATION ON INJECTED BBH SIGNAL, WITH THE NOISE-LESS TEMPLATE SHOWN AS WELL

THE RECREATION OF THE AUTOENCODER FOLLOWS CLOSELY
WHILE : . SG6 64-512 Hz AND SG 512-1024 HZ FAIL TO RECONSTRUCT THE

INJECTED BBH SIGNAL

Hanford

= Signal + Noise, AE input

= Signal

m  Background, mae: 0.79

= BBH, mae: 0.73

m Glitches, mae: 0.82
SG 64-512 Hz, mae: 0.81
SG 512-1024 Hz, mae: 0.82
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https://arxiv.org/abs/2309.11537

THE FINAL METRIC AS A FUNCTION OF SNR FOR GWAK AXES TRAINING SIGNALS, , S6 64-512
Hz, S6 512-1024 HZ AND FOR POTENTIAL ANOMALIES,
AND

|| ™ bbh
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https://arxiv.org/abs/2309.11537

