Generic representations of jets at detector-level with self-supervised learning

Kyle Cranmer, Etienne Dreyer, Eilam Gross, Nilotpal Kakati, Dmitrii Kobylianskii, Garrett Merz, Nathalie Soybelman, <u>Patrick Rieck</u>

European AI for Fundamental Physics Conference Amsterdam, April 30th 2024

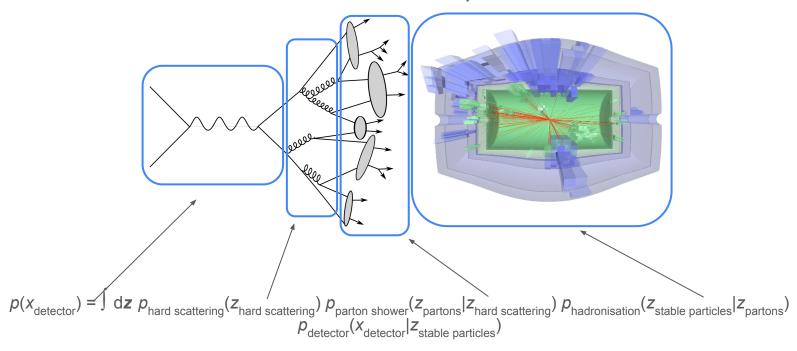
WEIZMANN
INSTITUTE
OF SCIENCE

Self-Supervised Learning in High Energy Physics

- Supervised learning: using labeled data to find a hidden representation $h(x_{jet})$, tailored to a specific task
- Alternative: leverage unlabeled data to find a representation $h(x_{jet})$ useful for multiple tasks
 - ⇒ self-supervised learning: identify the important parts of the data, i.e. lossy compression
- One approach: pick pairs of jets incorporating the same physics of interest and require their representations to be close by
 - ⇒ How to motivate notions of "sameness"?

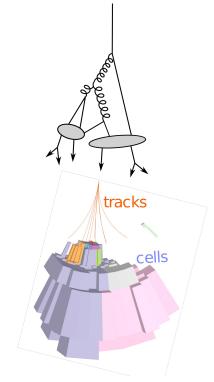
Markov Process and Self-Supervised Learning

Simulation chain, Markov process:

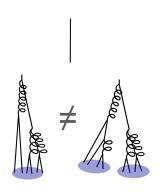


⇒ Various natural definitions of sameness of jets, set by a choice of step in the simulation chain

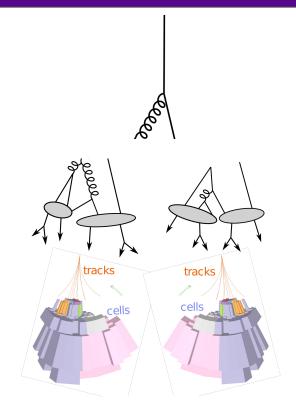
 Creation of pairs of "same" jets by running the simulation chain twice beyond a certain step



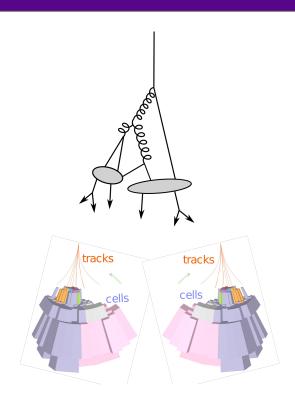
- Creation of pairs of "same" jets by running the simulation chain twice beyond a certain step
- One approach: rerun the parton shower
 ⇒ simplistic choice, e.g. risk of declaring
 2 jets from a hard splitting as 1 jet



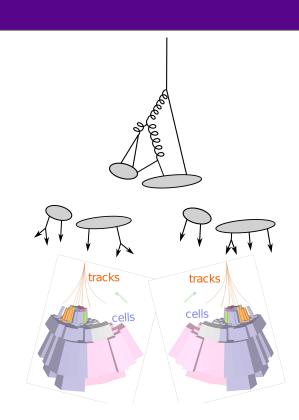
- Creation of pairs of "same" jets by running the simulation chain twice beyond a certain step
- One approach: rerun the parton shower
 ⇒ simplistic choice, e.g. risk of declaring
 2 jets from a hard splitting as 1 jet
- Go deeper: rerun the simulation chain after some parton splittings



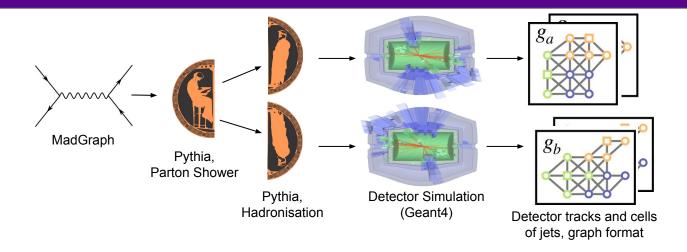
- Creation of pairs of "same" jets by running the simulation chain twice beyond a certain step
- One approach: rerun the parton shower
 ⇒ simplistic choice, e.g. risk of declaring
 2 jets from a hard splitting as 1 jet
- Go deeper: rerun the simulation chain after some parton splittings
- Don't go too deep: using the same particle-level jet twice gives the same tracks ⇒ collapse of the representation



- Creation of pairs of "same" jets by running the simulation chain twice beyond a certain step
- One approach: rerun the parton shower
 ⇒ simplistic choice, e.g. risk of declaring
 2 jets from a hard splitting as 1 jet
- Go deeper: rerun the simulation chain after some parton splittings
- Don't go too deep: using the same particle-level jet twice gives the same tracks ⇒ collapse of the representation
- Approach in the following: frozen parton shower, only run hadronisation and detector simulation twice



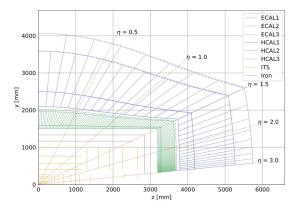
Event Simulation Chain

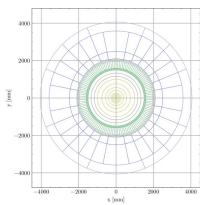


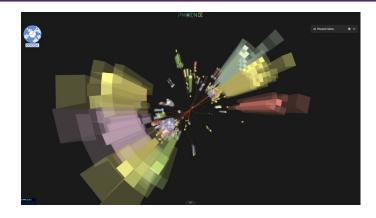
- Generation of jet events
 - Hard scattering: di-quark and di-gluon final states
 - Jet p_⊤ approx. 100 GeV
 - Training statistics approx. 10⁵ events
- Extract jets: anti-k_t algorithm, R = 0.4

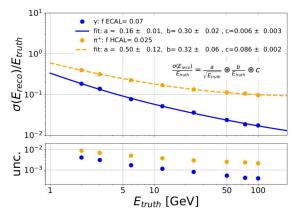
Detector Simulation

- Complicated experimental signatures of jets
 ⇒ benefit from a detailed detector simulation:
 Cocoa, using Geant4
- Charged particle tracker + electromagnetic and hadronic calorimeters
- Single particle calorimeter responses tuned to the ATLAS detector performance

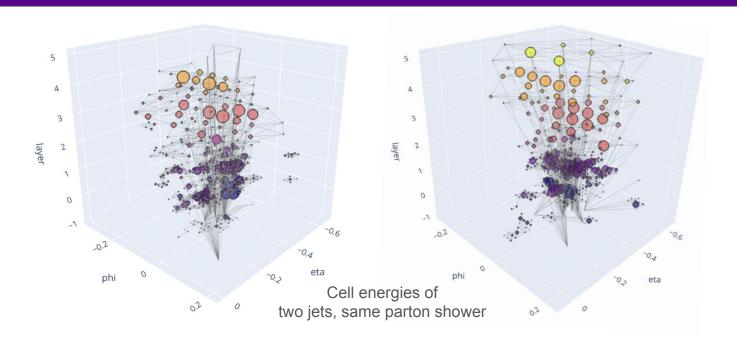








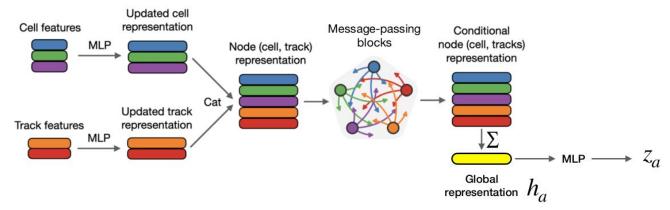
Jet tracks and cells as graphs



Large variety in jet pairs due to randomness in hadronisation and detector response ⇒ non-trivial learning task

Learning Strategy

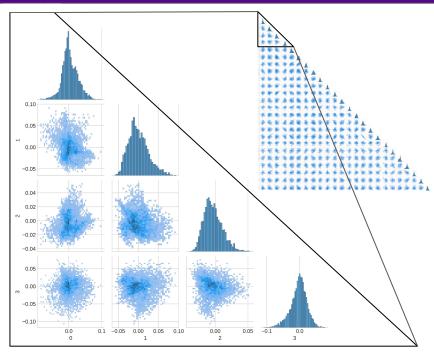
SSL backbone: Graph neural network



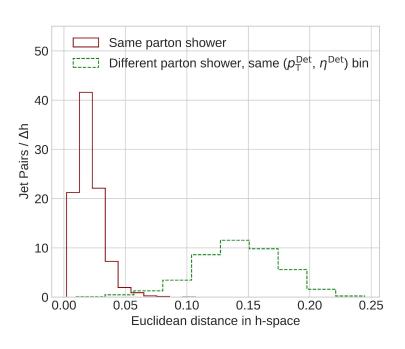
Loss function: SimCLR

$$L(z_a, z_b) = -\log \frac{\exp(\hat{z}_a \cdot \hat{z}_b/\tau)}{\sum_{i \neq a}^{2N} \exp(\hat{z}_a \cdot \hat{z}_i/\tau)} \quad \text{where} \quad \hat{z}_a := z_a/|z_a| \implies \hat{z}_a \cdot \hat{z}_b = \cos(\theta_{ab})$$

Learned Representations



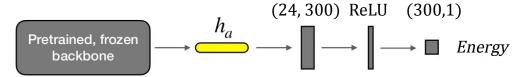
Reasonable distribution of jets in representation space



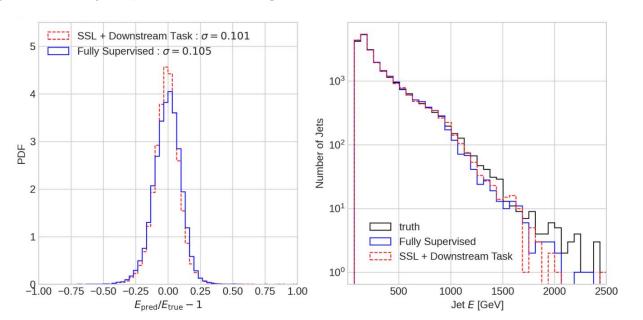
Learned to distinguish jets by their underlying parton showers!

Energy Regression

Downstream task:

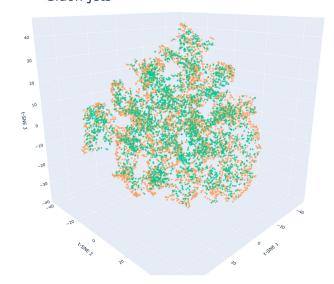


Comparing with a fully supervised training result, same network

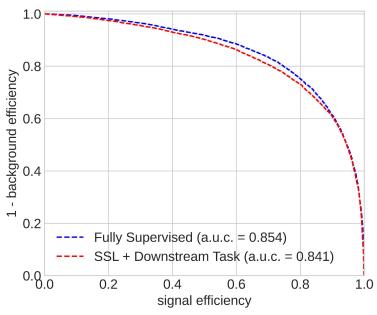


Quark / Gluon Tagging

Quark jetsGluon jets



- Clustering in representation space,
 SSL + kNN classifier: 73 % accuracy
- Fully supervised classifier: 78 % accuracy



Frozen SSL backbone + prediction head, compared with fully supervised classifier

Conclusion

- Built a foundation model of jets using self-supervised, contrastive learning
 - Various ways to define sameness of jets, here: frozen parton shower
- Results translate to LHC physics
 - Realistic detector simulation
 - Graph neural network